
                                         Surface Integrals of Vector Fields 

     The notion of Work motivated the definition of the line integral of a vector field.  

The notion of Flux motivates the definition of the surface integral of a vector field.  

Flux measures the rate at which a gas or fluid crosses a surface.  This is given by the 

integral of a velocity vector field 𝐹⃗ over a surface 𝑆. 

Def.  Let 𝐹⃗ be a vector field defined on a surface 𝑆, parametrized by 𝛷⃗⃗⃗ then 

                ∬ 𝑭⃗⃗⃗ ∙ 𝒅𝑺⃗⃗⃗
𝑺

= ∬ 𝑭⃗⃗⃗(𝜱⃗⃗⃗⃗(𝒖, 𝒗)) ∙ (𝑻⃗⃗⃗𝒖𝑫
× 𝑻⃗⃗⃗𝒗)𝒅𝒖𝒅𝒗. 

 

Ex.   Find the flux of the vector field 𝐹⃗(𝑥, 𝑦, 𝑧) = 𝑧𝑖 + 𝑦𝑗 + 𝑥𝑘⃗⃗  across the unit    

        sphere   𝑥2 + 𝑦2 + 𝑧2 = 1 .  

 

Let’s start with a standard parametrization of the sphere (outward pointing normal): 

𝛷⃗⃗⃗(𝜙, 𝜃) = (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑖 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑗 + (𝑐𝑜𝑠𝜙)𝑘⃗⃗;                                          
                                 0 ≤ 𝜙 ≤ 𝜋,   0 ≤ 𝜃 ≤ 2𝜋. 

𝑇⃗⃗𝜙 = (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)𝑖 + (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)𝑗 − (𝑠𝑖𝑛𝜙)𝑘⃗⃗  

𝑇⃗⃗𝜃 = −(𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑖 + (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑗  

𝑇⃗⃗𝜙 × 𝑇⃗⃗𝜃 = |
𝑖 𝑗 𝑘⃗⃗

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 0

|  

       = 𝑐𝑜𝑠𝜃(𝑠𝑖𝑛2𝜙)𝑖 + 𝑠𝑖𝑛𝜃(𝑠𝑖𝑛2𝜙)𝑗 + (𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃)(𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙) 𝑘⃗⃗   

       = 𝑐𝑜𝑠𝜃(𝑠𝑖𝑛2𝜙)𝑖 + 𝑠𝑖𝑛𝜃(𝑠𝑖𝑛2𝜙)𝑗 + (𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙) 𝑘⃗⃗   
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𝐹⃗ (𝛷⃗⃗⃗(𝜙, 𝜃)) = (𝑐𝑜𝑠𝜙)𝑖 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑗 + (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑘⃗⃗ 

𝐹⃗ ∙ (𝑇⃗⃗𝜙 × 𝑇⃗⃗𝜃) = 𝑐𝑜𝑠 𝜃 (sin2 𝜙)𝑐𝑜𝑠 𝜙 + sin2 𝜃 (sin3 𝜙) + 𝑐𝑜𝑠𝜃(sin2 𝜙)𝑐𝑜𝑠𝜙                       

                          = 2𝑐𝑜𝑠 𝜃 (sin2 𝜙)𝑐𝑜𝑠 𝜙 + sin2 𝜃 (sin3 𝜙) 

 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝐹⃗(𝛷⃗⃗⃗(𝜙, 𝜃)) ∙ (𝑇⃗⃗𝜙𝐷
× 𝑇⃗⃗𝜃)𝑑𝜙𝑑𝜃  

  = ∫ ∫ [2𝑐𝑜𝑠 𝜃 (sin2 𝜙)𝑐𝑜𝑠 𝜙 + sin2 𝜃 (sin3 𝜙)
𝜙=𝜋

𝜙=0
]

𝜃=2𝜋

𝜃=0
𝑑𝜙𝑑𝜃 

  = 2 ∫ 𝑐𝑜𝑠𝜃𝑑𝜃 ∫ sin2 𝜙(𝑐𝑜𝑠𝜙)𝑑𝜙
𝜙=𝜋

𝜙=0

𝜃=2𝜋

𝜃=0
                                                                     

                                                          + ∫ sin2 𝜃𝑑𝜃 ∫ sin3 𝜙𝑑𝜙.
𝜙=𝜋

𝜙=0

𝜃=2𝜋

𝜃=0
   

 

∫ 𝑐𝑜𝑠𝜃𝑑𝜃 = 0
𝜃=2𝜋

𝜃=0
, so the first term is equal to 0. 

 ∫ sin2 𝜃𝑑𝜃 = ∫ (
1

2
−

1

2
𝑐𝑜𝑠2𝜃) 𝑑𝜃 = (

1

2
𝜃 −

1

4
𝑠𝑖𝑛2𝜃)|

2𝜋
0

= 𝜋
𝜃=2𝜋

𝜃=0

𝜃=2𝜋

𝜃=0
 

∫ sin3 𝜙𝑑
𝜙=𝜋

𝜙=0
𝜙 = ∫ 𝑠𝑖𝑛𝜙

𝜙=𝜋

𝜙=0
(1 − cos2 𝜙)𝑑 𝜙 ;  now let 𝑢 = 𝑐𝑜𝑠𝜙 to get 

                                  = − ∫ (1 − 𝑢2)𝑑𝑢 =
4

3

𝑢=−1

𝑢=1
. 

 

Putting these three integrals together we have: 

𝐹𝑙𝑢𝑥 = ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

=
4𝜋

3
 . 
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Orientation 

Def.  An oriented surface 𝑆 is a 2-sided surface with one side specified as the     

outside or positive side and the other side the inside or negative side.  At each point 

(𝑥, 𝑦, 𝑧) ∈ 𝑆 there are 2 unit normals, 𝑛⃗⃗1 and 𝑛⃗⃗2, where 𝑛⃗⃗1 = −𝑛⃗⃗2. 

 

 

 

 

 

 

 

 

 

 

Ex.  Let’s take the unit sphere 𝑥2 + 𝑦2 + 𝑧2 = 1. 

𝛷⃗⃗⃗(𝜙, 𝜃) = (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑖 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑗 + (𝑐𝑜𝑠𝜙)𝑘⃗⃗;     0 ≤ 𝜙 ≤ 𝜋,   0 ≤ 𝜃 ≤ 2𝜋 

As we just saw: 

𝑇⃗⃗𝜙 × 𝑇⃗⃗𝜃 = 𝑐𝑜𝑠𝜃(𝑠𝑖𝑛2𝜙)𝑖 + 𝑠𝑖𝑛𝜃(𝑠𝑖𝑛2𝜙)𝑗 + (𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙) 𝑘⃗⃗ .  

Thus we can calculate a unit normal vector by   𝑛⃗⃗1 =
𝑇⃗⃗⃗𝜙×𝑇⃗⃗⃗𝜃

|𝑇⃗⃗⃗𝜙×𝑇⃗⃗⃗𝜃|
. 

|𝑇⃗⃗𝜙 × 𝑇⃗⃗𝜃| = √𝑐𝑜𝑠2𝜃(𝑠𝑖𝑛4𝜙) + 𝑠𝑖𝑛2𝜃(𝑠𝑖𝑛4𝜙) + 𝑠𝑖𝑛2𝜙𝑐𝑜𝑠2𝜙 

                                 = 𝑠𝑖𝑛𝜙. 

𝑛⃗⃗1 

𝑛⃗⃗2 
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𝑛⃗⃗1 =
𝑇⃗⃗𝜙×𝑇⃗⃗𝜃

|𝑇⃗⃗𝜙×𝑇⃗⃗𝜃|
= 𝑐𝑜𝑠𝜃(𝑠𝑖𝑛𝜙)𝑖 + 𝑠𝑖𝑛𝜃(𝑠𝑖𝑛𝜙)𝑗 + (𝑐𝑜𝑠𝜙) 𝑘⃗⃗ =𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗⃗ 

𝑛⃗⃗2 =
𝑇⃗⃗𝜃×𝑇⃗⃗𝜙

|𝑇⃗⃗𝜃×𝑇⃗⃗𝜙|
= −𝑐𝑜𝑠𝜃(𝑠𝑖𝑛𝜙)𝑖 − 𝑠𝑖𝑛𝜃(𝑠𝑖𝑛𝜙)𝑗 − (𝑐𝑜𝑠𝜙) 𝑘⃗⃗ =−𝑥𝑖 − 𝑦𝑗 − 𝑧𝑘⃗⃗. 

 

 

 

 

 

 

 

 

 

All we have done here is switch which is the first variable and which is the second.  In 

the first case we have (𝜙, 𝜃),  in the second case we have (𝜃, 𝜙).  Thus, 

 𝛷⃗⃗⃗(𝜙, 𝜃) = (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑖 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑗 + (𝑐𝑜𝑠𝜙)𝑘⃗⃗;    0 ≤ 𝜙 ≤ 𝜋,   0 ≤ 𝜃 ≤ 2𝜋 

   and  

𝛷⃗⃗⃗(𝜃, 𝜙) = (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑖 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑗 + (𝑐𝑜𝑠𝜙)𝑘⃗⃗;      0 ≤ 𝜙 ≤ 𝜋,   0 ≤ 𝜃 ≤ 2𝜋 

are both parametrizations of the unit sphere, but they have different orientations.  

Notice that 𝑛⃗⃗1 points outward (i.e. positive orientation) and 𝑛⃗⃗2 points inward (i.e. 

negative orientation). 

 

𝑛⃗⃗1 

𝑛⃗⃗2 
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Orientation when S is given by 𝑧 = 𝑔(𝑥, 𝑦). 

 

When a surface, 𝑆, is given by 𝑧 = 𝑔(𝑥, 𝑦), we can always parametrize it by: 

𝑥 = 𝑢      𝑦 = 𝑣      𝑧 = 𝑔(𝑢, 𝑣);    ie      𝛷⃗⃗⃗(𝑢, 𝑣) =< 𝑢, 𝑣, 𝑔(𝑢, 𝑣) >  

 

𝑇⃗⃗𝑢 =< 1,0, 𝑔𝑢 >       𝑇⃗⃗𝑣 =< 0,1, 𝑔𝑣 >        

 

𝑇⃗⃗𝑢 × 𝑇⃗⃗𝑣 = |
𝑖 𝑗 𝑘⃗⃗
1 0 𝑔𝑢

0 1 𝑔𝑣

| = −(𝑔𝑢)𝑖 − ( 𝑔𝑣)𝑗 + 𝑘⃗⃗;       Thus a unit normal is:  

 

𝑛⃗⃗ =
𝑇⃗⃗𝑢×𝑇⃗⃗𝑣

|𝑇⃗⃗𝑢×𝑇⃗⃗𝑣|
=

−(𝑔𝑢)𝑖−( 𝑔𝑣)𝑗+𝑘⃗⃗

√1+(𝑔𝑢)2+(𝑔𝑣)2
 . 

 

Notice that the k component is positive so the unit normal has an “upward” 

component. This will be taken as the positive orientation for this surface. 

 

 

 

 

 

 

 

𝑛⃗⃗ 
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Theorem:  Let 𝑆 be an oriented surface and let 𝛷⃗⃗⃗1 and 𝛷⃗⃗⃗2 be two regular orientation 

preserving parametrizations, with 𝐹⃗ a continuous vector field on S, then:       

                          ∬ 𝐹⃗ ∙ 𝑑𝑆 =
𝛷⃗⃗⃗⃗1

∬ 𝐹⃗ ∙ 𝑑𝑆
𝛷⃗⃗⃗⃗2

.  

If 𝛷⃗⃗⃗1 and 𝛷⃗⃗⃗2 have opposite orientations then  

                          ∬ 𝐹⃗ ∙ 𝑑𝑆 =
𝛷⃗⃗⃗⃗1

− ∬ 𝐹⃗ ∙ 𝑑𝑆
𝛷⃗⃗⃗⃗2

. 

If 𝑓 is a real valued continuous function defined on S and if 𝛷⃗⃗⃗1 and 𝛷⃗⃗⃗2 are 

parametrizations of S, then : 

                               ∬ 𝑓𝑑𝑆 =
𝛷⃗⃗⃗⃗1

∬ 𝑓𝑑𝑆.
𝛷⃗⃗⃗⃗2

  

 

 

Relationship of Integrals of Vector Fields to Integrals of Scalar Functions 

Recall that for line integrals of vector fields we had: 

∫ 𝐹⃗
𝑐

∙ 𝑑𝑠 = ∫ 𝐹⃗
𝑐

∙ 𝑐′⃗⃗⃗ ⃗(𝑡)𝑑𝑡                                                                                                   

                    = ∫ 𝐹⃗
𝑡=𝑏

𝑡=𝑎
∙

𝑐′⃗⃗ ⃗⃗ (𝑡)

|𝑐′⃗⃗ ⃗⃗ (𝑡)|
(|𝑐′⃗⃗⃗ ⃗(𝑡)|)𝑑𝑡 = ∫ 𝐹⃗

𝑐
∙ 𝑇⃗⃗𝑑𝑠 

where 𝑇⃗⃗ =
𝑐′⃗⃗ ⃗⃗ (𝑡)

|𝑐′⃗⃗ ⃗⃗ (𝑡)|
 is the unit tangent vector to 𝑐(t).   

So we have: 

∫ 𝐹⃗
𝑐

∙ 𝑑𝑠 = ∫ 𝑓𝑑𝑠
𝑐

;   where 𝑓(𝑥, 𝑦, 𝑧) = 𝐹⃗ ∙ 𝑇⃗⃗.  So 𝑓 is the projection of        

the vector field 𝐹⃗ onto the unit tangent vector, 𝑇⃗⃗, of the curve 𝑐. 
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Similarly, we can do the following with surface integrals of vector fields: 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝐹⃗(𝛷⃗⃗⃗(𝑢, 𝑣)) ∙ (𝑇⃗⃗𝑢𝐷
× 𝑇⃗⃗𝑣)𝑑𝑢𝑑𝑣                                                                       

                     = ∬ 𝐹⃗ ∙
𝑇⃗⃗𝑢×𝑇⃗⃗𝑣

|𝑇⃗⃗𝑢×𝑇⃗⃗𝑣|𝐷
(|𝑇⃗⃗𝑢 × 𝑇⃗⃗𝑣|)𝑑𝑢𝑑𝑣 

                        = ∬ 𝐹⃗ ∙ 𝑛⃗⃗
𝐷

(|𝑇⃗⃗𝑢 × 𝑇⃗⃗𝑣|)𝑑𝑢𝑑𝑣 = ∬ (𝐹⃗ ∙ 𝑛⃗⃗)𝑑𝑆.
𝑆

  

 

So ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝑓𝑑𝑆
𝑆

;   where 𝑓(𝑥, 𝑦, 𝑧) = 𝐹⃗ ∙ 𝑛⃗⃗. 

 

So 𝑓(𝑥, 𝑦, 𝑧) is the projection of the vector field 𝐹⃗ onto the unit normal vector, 𝑛⃗⃗,   

of the surface 𝑆.  This observation can sometimes help us to calculate surface 

integrals faster, particularly when 𝐹⃗ ∙ 𝑛⃗⃗ is a constant function. 

 

Ex.   Evaluate  ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

  where 𝐹⃗ = −(2𝑥)𝑖 − (2𝑦)𝑗 − (2𝑧)𝑘⃗⃗,   and 𝑆 is the unit 

sphere (if no orientation is specified, use the “positive” orientation, ie, 𝑛⃗⃗ pointing 

outward). 

 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝑓𝑑𝑆
𝑆

;   where 𝑓(𝑥, 𝑦, 𝑧) = 𝐹⃗ ∙ 𝑛⃗⃗ 

For the unit sphere  𝑛⃗⃗ =< 𝑥, 𝑦, 𝑧 >;  thus we have: 

𝑓(𝑥, 𝑦, 𝑧) = 𝐹⃗ ∙ 𝑛⃗⃗ =< −2𝑥, −2𝑦, −2𝑧 >∙< 𝑥, 𝑦, 𝑧 >                                                       

                   = −2(𝑥2 + 𝑦2 + 𝑧2) = −2   

since (𝑥, 𝑦, 𝑧) lies on the unit sphere 𝑥2 + 𝑦2 + 𝑧2 = 1. 
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∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝑓𝑑𝑆
𝑆

= ∬ −2𝑑𝑆
𝑆

= −2 ∬ 𝑑𝑆 = −2(𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑆)
𝑆

 

                         = −2(4𝜋𝑟2) = −8𝜋. 

 

Ex.   Evaluate  ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

, where 𝐹⃗(𝑥, 𝑦, 𝑧) = 𝑥𝑘⃗⃗,  and 𝑆 is the surface  

𝑥2 + 𝑦2 ≤ 1 in the 𝑥, 𝑦 plane. 

 

 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝑓𝑑𝑆
𝑆

;   

 where 𝑓(𝑥, 𝑦, 𝑧) = 𝐹⃗ ∙ 𝑛⃗⃗. 

In this case 𝑛⃗⃗ is just the vector 𝑘⃗⃗;   

and 𝑓(𝑥, 𝑦, 𝑧) = 𝐹⃗ ∙ 𝑛⃗⃗ = (𝑥𝑘⃗⃗) ∙  𝑘⃗⃗ = 𝑥; 

 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝑓𝑑𝑆
𝑆

= ∬ 𝑥𝑑𝑆
𝑆

= ∬ (𝑥)
𝑥2+𝑦2≤1

𝑑𝑦𝑑𝑥 . 

 

Since we are integrating over the unit disk, change to polar coordinates: 

                   = ∫ ∫ (𝑟𝑐𝑜𝑠𝜃)(𝑟)𝑑𝑟𝑑𝜃
𝑟=1

𝑟=0

𝜃=2𝜋

𝜃=0
 

                   = ∫ 𝑐𝑜𝑠𝜃𝑑𝜃 ∫ 𝑟2𝑑𝑟 = (0)(∫ 𝑟2𝑑𝑟) = 0
𝑟=1

𝑟=0

𝑟=1

𝑟=0

𝜃=2𝜋

𝜃=0
. 

                    

 

𝑥2 + 𝑦2 = 1 

𝑆 
𝑥 

𝑦 
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Surface Integrals when S is given by 𝑧 = 𝑔(𝑥, 𝑦)  

 

If 𝑧 = 𝑔(𝑥, 𝑦), we can always parametrize the surface by   

𝑥 = 𝑢,    𝑦 = 𝑣,    𝑧 = 𝑔(𝑢, 𝑣),  ie   𝛷⃗⃗⃗(𝑢, 𝑣) =< 𝑢, 𝑣, 𝑔(𝑢, 𝑣) >.  

 

𝑇⃗⃗𝑢 =< 1, 0, 𝑔𝑢 >              𝑇⃗⃗𝑣 =< 0, 1, 𝑔𝑣 >         

𝑇⃗⃗𝑢 × 𝑇⃗⃗𝑣 = |
𝑖 𝑗 𝑘⃗⃗
1 0 𝑔𝑢

0 1 𝑔𝑣

| = −𝑔𝑢𝑖 − 𝑔𝑣𝑗 + 𝑘⃗⃗ . 

 

Since 𝑥 = 𝑢,    𝑦 = 𝑣,  we can use 𝑥 and 𝑦 instead of 𝑢 and 𝑣. So we can write: 

𝑇⃗⃗𝑥 × 𝑇⃗⃗𝑦 = −𝑔𝑥𝑖 − 𝑔𝑦𝑗 + 𝑘⃗⃗ =< −𝑔𝑥, −𝑔𝑦, 1 > 

𝐹⃗(𝑥, 𝑦, 𝑧) = (𝐹1)𝑖 + (𝐹2)𝑗 + (𝐹3)𝑘 =< 𝐹1, 𝐹2, 𝐹3 > 

 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝐹⃗ ∙ (𝑇⃗⃗𝑥𝐷
× 𝑇⃗⃗𝑦)𝑑𝑥𝑑𝑦  

                    = ∬ < 𝐹1, 𝐹2, 𝐹3 >∙
𝐷

< −𝑔𝑥, −𝑔𝑦, 1 > 𝑑𝑥𝑑𝑦 

 

∬ 𝑭⃗⃗⃗ ∙ 𝒅𝑺⃗⃗⃗
𝑺

 = ∬ (−(𝑭𝟏)𝒈𝒙 − (𝑭𝟐)𝒈𝒚 + 𝑭𝟑)
𝑫

𝒅𝒙𝒅𝒚. 
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Ex.   Evaluate ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

 where 𝐹⃗ =< 𝑦, 𝑥, 𝑧 > and 𝑆 is the boundary of the solid E 

given by the paraboloid 𝑧 = 1 − 𝑥2 − 𝑦2 and the plane 𝑧 = 0. 

 

 

 

 

 

 

 

 

 

 

In this case, the surface S is made up of 2 pieces, 𝑆1 and 𝑆2.  𝑆1 is the surface 

 𝑧 = 1 − 𝑥2 − 𝑦2 where 𝑧 ≥ 0, and 𝑆2 is the surface in the 𝑥𝑦-plane (ie 𝑧 = 0)    

where 𝑥2 + 𝑦2 ≤ 1. 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆1

+ ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆2

  

To calculate ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆1

, notice that 𝑆1 is given by 𝑔(𝑥, 𝑦) = 1 − 𝑥2 − 𝑦2,   𝑧 ≥ 0. 

 

Thus we can use the formula we just derived for ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

 when S is given by 

 𝑧 = 𝑔(𝑥, 𝑦).  In this case since 𝐹⃗ =< 𝑦, 𝑥, 𝑧 >, 𝐹1 = 𝑦, 𝐹2 = 𝑥, 𝐹3 = 𝑧. 

𝑔(𝑥, 𝑦) = 1 − 𝑥2 − 𝑦2;           so   𝑔𝑥 = −2𝑥    and     𝑔𝑦 = −2𝑦.  

𝑆1 ;   𝑧 = 1 − 𝑥2 − 𝑦2  

𝑆2 
𝑥 

𝑦 

𝑧 
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∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆1

= ∬ (−(𝐹1)𝑔𝑥 − (𝐹2)𝑔𝑦 + 𝐹3)
𝐷

𝑑𝑥𝑑𝑦  

                     = ∬ (2𝑥𝑦 + 2𝑥𝑦 + 𝑧)
𝐷

𝑑𝑥𝑑𝑦 ;      but  𝑧 = 1 − 𝑥2 − 𝑦2 

                       = ∬ (4𝑥𝑦 + 1 − 𝑥2 − 𝑦2)
𝐷

𝑑𝑥𝑑𝑦.  

 

𝐷 is the set where 𝑔(𝑥, 𝑦) = 1 − 𝑥2 − 𝑦2 ≥ 0,  that is, 𝑥2 + 𝑦2 ≤ 1. 

Since 𝐷 is the unit disk in the 𝑥, 𝑦 plane, let’s change to polar coordinates. 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆1

= ∫ ∫ (4𝑟2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 1 − 𝑟2)(𝑟)𝑑𝑟𝑑𝜃
𝑟=1

𝑟=0

𝜃=2𝜋

𝜃=0
  

                    = ∫ ∫ (4𝑟3𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑟 − 𝑟3)𝑑𝑟𝑑𝜃
𝑟=1

𝑟=0

𝜃=2𝜋

𝜃=0
  

                    = ∫ 𝑟4𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 +
1

2
𝑟2 −

1

4
𝑟4𝜃=2𝜋

𝜃=0
|
1
0

𝑑𝜃 

                    = ∫ (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 +
1

4
) 𝑑𝜃 =

1

4
(2𝜋) =

𝜋

2

𝜃=2𝜋

𝜃=0
 

Since we can see ∫ (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃)𝑑𝜃 = 0
𝜃=2𝜋

𝜃=0
 by letting 𝑢 = 𝑠𝑖𝑛𝜃. 

 

To calculate ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆2

, notice that 𝑆2 is a region in the 𝑥, 𝑦-plane so that 𝑛⃗⃗=−𝑘⃗⃗   

(the outward direction in this case is “down”). 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆2

= ∬ (𝐹⃗ ∙ 𝑛⃗⃗)𝑑𝑆
𝑆2

= ∬ (< 𝑦, 𝑥, 𝑧 >∙< 0,0, −1 >)𝑑𝑆
𝑆2

  

                       = ∬ −𝑧𝑑𝑆
𝑆2

=0,     since 𝑧 = 0 on 𝑆2 (which is in the 𝑥𝑦-plane) 

 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆1

+ ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆2

=
𝜋

2
+ 0 =

𝜋

2
.   
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Summary of formulas for Surface Integrals (of Scalar Functions and Vector Fields) 

1.  For parametrized surfaces 𝛷⃗⃗⃗(𝑢, 𝑣) 

a.   Surface integral of a scalar function 𝑓(𝑥, 𝑦, 𝑧) 

∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 = ∬ 𝑓(
𝐷𝑆

𝛷⃗⃗⃗(𝑢, 𝑣))|𝑇⃗⃗𝑢 × 𝑇⃗⃗𝑣|𝑑𝑢𝑑𝑣  

Ex.  Evaluate  ∬ (𝑥2 + 𝑦2 + 𝑧)𝑑𝑆
𝑆

,  where 𝑆 is given by  

𝑥 = 𝑟𝑐𝑜𝑠𝜃,    𝑦 = 𝑟𝑠𝑖𝑛𝜃,   𝑧 = 𝑟;     0 ≤ 𝑟 ≤ 1;    0 ≤ 𝜃 ≤ 2𝜋.   

 

b.   Surface integral of a vector field 𝐹⃗(𝑥, 𝑦, 𝑧) 

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ 𝐹⃗(𝛷⃗⃗⃗(𝑢, 𝑣)) ∙ (𝑇⃗⃗𝑢𝐷
× 𝑇⃗⃗𝑣)𝑑𝑢𝑑𝑣 = ∬ (𝐹⃗ ∙ 𝑛⃗⃗)𝑑𝑆

𝑆
; 𝑛⃗⃗ =unit normal                                                                  

Ex.   Find ∬ < 𝑧, 𝑦, 𝑥 >∙ 𝑑𝑆
𝑆

,  where 𝑆 is given by: 

𝛷⃗⃗⃗(𝜙, 𝜃) =< 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜙 >;  0 ≤ 𝜙 ≤ 𝜋    0 ≤ 𝜃 ≤ 2𝜋.  

 

2.  For surfaces given by 𝑧 = 𝑔(𝑥, 𝑦) 

a.  Surface integral of a scalar function 𝑓(𝑥, 𝑦, 𝑧) 

 ∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 = ∬ 𝑓(
𝐷𝑆

𝑥, 𝑦, 𝑔(𝑥, 𝑦))√1 + (𝑔𝑥)2 + (𝑔𝑦)2 𝑑𝑥𝑑𝑦  

Ex.   Evaluate ∬ 𝑦𝑑𝑆
𝑆

, where S is the surface 𝑧 = 𝑥 + 𝑦2,  0 ≤ 𝑥 ≤ 1   0 ≤ 𝑦 ≤ 2.  

 

b.  Surface integral of a vector field 𝐹⃗(𝑥, 𝑦, 𝑧)  

∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

= ∬ (−(𝐹1)𝑔𝑥 − (𝐹2)𝑔𝑦 + 𝐹3)
𝐷

𝑑𝑥𝑑𝑦  

Ex.  Find ∬ 𝐹⃗ ∙ 𝑑𝑆
𝑆

 where 𝐹⃗ =< 𝑦, 𝑥, 𝑧 > and 𝑆 is 𝑔(𝑥, 𝑦) = 1 − 𝑥2 − 𝑦2, 𝑧 ≥ 0. 


