Surface Integrals of Vector Fields

The notion of Work motivated the definition of the line integral of a vector field.
The notion of Flux motivates the definition of the surface integral of a vector field.
Flux measures the rate at which a gas or fluid crosses a surface. This is given by the

integral of a velocity vector field F over a surface S.

Def. Let F be a vector field defined on a surface S, parametrized by @ then

ﬂs F-ds= ffp F(®(u,v)) - (T, x T,))dudv.

Ex. Find the flux of the vector field ﬁ'(x, y,z) =zl+y]+ xk across the unit
sphere x2+y?+2z%2=1.

Let’s start with a standard parametrization of the sphere (outward pointing normal):

(¢, 0) = (cosOsing)i + (sinbsing)j + (cosc].’))l_é;
0<¢p<m 0<6<2m

Ty = (cosOcosp)i + (sinfcosp) — (sinq,’))I:f)

T = —(sinBsing)T + (cosBsing)j

—

Ty XTg = | cosOcos¢p sinBcos¢p —sing
—sinfsin¢ cosOsing 0

= cosO(sin?)T + sinf(sin¢)J + (cos?6 + sin?0)(sindcosp) k

= cosO(sin%)T + sinb(sin¢p)] + (sinpcosp) k



F (5((,1), 9)) = (cosp)T + (sinBsing)j + (cos@sind))z

F- (Td, x Ty) = cos 6 (sin® ¢)cos ¢ + sin? @ (sin? ¢) + cosB(sin? p)cosp
= 2cos 0 (sin® ¢p)cos ¢ + sin? O (sin3 ¢)

[y F-dS=[f, F(®(¢,0))- (TyxTy)dpds
fe an [2cos 0 (sin? ¢)cos ¢ + sin? 6 (sin3 ¢)] dpd6

= 2f9 2T c0s0d0 f¢ . " sin? ¢ (cosp)dep

+f69 021'[ sin? 6d6 f¢> . " sin3 ¢pdep.

6=2
f9=0 " c0s0d6 = 0, so the first term is equal to 0.

6=2m . , _ O=2m (1 1 ! 1 . 2T _
g SIN“0do = [, _ . (E—ECOSZH)dQ— (59—151n29)| 0=

f(;p:: sin3 ¢pd ¢ = fcz):: sing (1 — cos? ¢p)d ¢ ; now letu = cos¢ to get

u=-1

= L (- u?)du = -

Putting these three integrals together we have:

Flux = [f ﬁ-d§=4?n.



Orientation

Def. An oriented surface S is a 2-sided surface with one side specified as the
outside or positive side and the other side the inside or negative side. At each point
(x,y,2) € S there are 2 unit normals, 71; and 71, where 11, = —7,.

Ex. Let’s take the unit sphere x + y% + z% = 1.

®(¢,0) = (cosOsing)T + (sinbsing)j + (cosp)k; 0<¢p<m 0<6<2n

As we just saw:

ib X Ty = cosO(sin2¢)T + sind(sin?¢)] + (singcose) k .

Thus we can calculate a unit normal vector by 7; = ﬁ

|f¢ X f9| = \/cos20(sin*¢p) + sin?0(sin*¢p) + sin2¢cos2¢

= sing.



n, = |;¢i;6| = cosO(sing)i + sinf(sind)j + (cosd) k =xT + yj + zk
¢xTo

n, = l?i;‘pl = —cosO(sing)i — sinb(sind)j — (cosp) k =—xT — yj — zk.
6”1 ¢

All we have done here is switch which is the first variable and which is the second. In
the first case we have (¢, 8), in the second case we have (0, ¢). Thus,

®(¢,0) = (cosOsing)T + (sinbsing)j + (cosp)k; 0<p<m 0<6<2m
and

(_5(9,¢>) = (cosOsing)T + (sinbsing)j + (cosqb)l_c); 0<¢p<m 0<0<2m

are both parametrizations of the unit sphere, but they have different orientations.

Notice that 71; points outward (i.e. positive orientation) and 71, points inward (i.e.
negative orientation).



Orientation when S is given by z = g(x, v).

When a surface, S, is given by z = g(x, y), we can always parametrize it by:

x=u y=v z=guv); ie 5(u,v)=<u,v,g(u,v)>

T,=<10,9,> T,=<01,g,>

TuxT,=[1 0 gy|=-(guwT—(gy)]+k; Thusaunitnormalis:
0 1 g,
ﬁ _ ?uxﬁ: _ —(gu)f—(gv)7+7()

O TxXTy| 1+ ()2 +(g0)?

Notice that the k component is positive so the unit normal has an “upward”
component. This will be taken as the positive orientation for this surface.




Theorem: Let S be an oriented surface and let 0_51 and 61_52 be two regular orientation

preserving parametrizations, with F a continuous vector field on S, then:

-

If (_;51 and <1_52 have opposite orientations then

-

ffalﬁ' :—ffa ds.

If f is a real valued continuous function defined on S and if (751 and 52 are
parametrizations of S, then :

ff;. £dS = [ fds.

Relationship of Integrals of Vector Fields to Integrals of Scalar Functions

Recall that for line integrals of vector fields we had:

[, F-d$=[ F-d(®dt
t= b—> c(t)

- -|ﬁ(t)|(| c®|)dt = [ F-Tds

t=a

—
!

where T = | is the unit tangent vector to C(t).

¢’ (t) |
So we have:

fc F-ds= fc fds; where f(x,y,z) = . T. So f is the projection of

the vector field F' onto the unit tangent vector,

F
T

, of the curve c.



Similarly, we can do the following with surface integrals of vector fields:

I F-dS= I, F(®w,v)) - (T, x T,)dudv
— ffD 7. TuxTy (lfu % ﬁ,Ddudv

| T xTy|

= [f, F-A(|Ty x T,|)dudv = [f, (F-#)ds.

Soffs F-dS = ffs £dS; where f(x,v,z) = F - 7.

So f(x, v, Z) is the projection of the vector field F onto the unit normal vector, ﬁ,

of the surface S. This observation can sometimes help us to calculate surface

integrals faster, particularly when F - 7 is a constant function.

Ex. Evaluate [f, F-dS where F = —(2x)7 — (2y)] — (22)k, and S is the unit
sphere (if no orientation is specified, use the “positive” orientation, ie, 7 pointing
outward).

ffs F-dS = ffs fdS; where f(x,y,2) =F-n
For the unit sphere 1 =< x, v,z >; thus we have:

fx,y,2) = F =< —2x,—2y,—22 >< x,,Z >
=—-2(x*+y*+2z%) =-2

since (x,y, z) lies on the unit sphere x> + y? + z? = 1.



Jf F-dS = jf fdS = H —2dS = —Zﬂ dS = —2(surface area of S)
S S S S

= —2(4nr?) = —8m.

Ex. Evaluate ffS F-dS, where F(x, y,z) = xk, and S is the surface

x?+ y? < linthex,y plane. J

I, F-as = ff, ras
where f(x,y,z) = F 7.

In this case 71 is just the vector k;

[l; F-dS=[f fds=[f; xdS = [[,z, 2.,(x) dydx

Since we are integrating over the unit disk, change to polar coordinates:

= 99:0211 f::ol (rcos8)(r)drd6o

= 09:0271 cos0do f::ol rédr = (0)( frr:ol r2dr) = 0.



Surface Integrals when S is given by z = g(x,y)

If z = g(x,y), we can always parametrize the surface by

x=u, y=v z=gWv), ie 5(u, v) =<u,v,gu,v) >.

T, =<1,0,g, > T,=<0,1,g, >
TWwXT, =11 0 gu|=—9ul—9vJ+k.
0O 1 g,

Sincex =u, y = v, we can use x and y instead of u and v. So we can write:

—

Te XTy = —=gul — gy] + k=<—0y,—Ggy, 1>

F(x,y,2) = (F)T+ (F)] + (F3)k =< Fy, Fy, F3 >

[y F-dS=[[ F-(T,xT))dxdy

= HD < F,Fy) F3 > < —gy,—gy, 1 > dxdy

[J; F-dS=[f, (—~(F1)gx— (F2)g, + F3) dxdy.
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Ex. Evaluate ffs F - dS where F =< y,x,z > and S is the boundary of the solid E
given by the paraboloid z = 1 — x? — y? and the plane z = 0.

In this case, the surface S is made up of 2 pieces, S; and S,. S is the surface

z=1-x?—y%wherez > 0,and S, is the surface in the xy-plane (ie z = 0)

where x2 + y2 < 1.
I F-dSszle-dS+ffSZF-dS

To calculate fs F- d§, notice that S; isgiven by g(x,y) =1 —x2 —y?, z>0.
1

Thus we can use the formula we just derived for ffs ﬁ . d§ when S is given by

z = g(x,y). Inthis case since F =< v, x,z>F =y, F, =x, F3=2.

glx,y) =1—x% —y?; s0 gy =—2x and g, = —2y.
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[l F-dS = [f, (~(F)gx — (F)gy + F;) dxdy
= [, (2xy + 2xy + z)dxdy; but z=1-x?—y?

= [f, (4xy + 1 —x* — y?) dxdy.

D is the set where g(x,y) = 1 — x? —y? > 0, thatis, x? + y? < 1.

Since D is the unit disk in the x, y plane, let’s change to polar coordinates.

Jls, F-dS = 99:0211 f::ol(é}rzcosesine +1—7r2)(r)drdé
_ rb=2m r=1 3 ] 3
= Jo=o frzo (4r°cosOsinf +r — r>)drd6

= Jgo, TFcosOsing +-r? —-r |46

6=2 . 1 1
= Joo " (cos@sm@ + Z) do = ” (2m) = g

0=2 . .
Since we can see [, _ "(cosOsin0)dO = 0 by letting u = sind.

To calculate ﬂs F - dS, notice that S, is a region in the x, y-plane so that 1=—k
2

(the outward direction in this case is “down”).

[fs, F-dS = [[; (F-dS = [[; (<y,x,2><00,~1>)dS

= ffs —zdS=0, sincez = 0on S, (whichisin the xy-plane)
2

=S|
Q
ta
+
=
T
Q
Ly
[l
NS
+
o
[l
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Summary of formulas for Surface Integrals (of Scalar Functions and Vector Fields)

1. For parametrized surfaces @ (u,v)

a. Surface integral of a scalar function f(x,y, z)

[fs fGy,2)dS = [[ f(B,v))|T, x T,|dudv
Ex. Evaluate ffs (x? + y? + z)dS, where S is given by

x=rcosf, y=rsind, z=r; 0<r<1, 0560 <2m.

b. Surface integral of a vector field ﬁ(x, Y, Z)
I F-dS = I, F(®u,v)) - (T, x T,,)dudv = I (F - )dS; 7 =unit normal
Ex. Find ffs < z,y,x >-dS, where S is given by:

(¢, 0) =< cosBsing, sinfsing,cosp > 0<dp<m 0<6 <27

2. For surfaces given by z = g(x, y)

a. Surface integral of a scalar function f(x,y, z)

Jl; fC,y,2)dS = [[, f(xy,9y)) J 1+ (gx)? + (gy)? dxdy

Ex. Evaluate [, ydS, whereSisthesurfacez=x+y? 0<x<1 0<y<2.

b. Surface integral of a vector field ﬁ(x, V,Z)
[ly F-dS = [f, (~=(F)gx = (F)gy + Fs) dxdy

Ex. Find ffs F - dS where F =< y,x,z>andSisg(x,y) =1—x%—y%,z>0.



