A Quick Review of Multiple Integration

Double Integration

If the x and y endpoints of integration are all constants (i.e., just numbers, no
variables), then you are integrating over a rectangular region in the plane whose
sides are parallel to the x and y axes.
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To evaluate this integrate, we first integrate with respect to x, holding y constant,
substitute the values of x, and then integrate with respect to y.
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When the endpoints of integration are all constants and the function you are
integrating can be written as f(x,y) = g(x)h(y), then
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When the region we are integrating over is not a rectangle, the endpoints in x and y
will not all be constant. We have 2 methods we can consider in this case.

1. If the region D is bounded below by y = g(x) and above by y = h(x), and along
the sides by x = a and x = b, we have:
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2. Ifthe region D is bounded on the left side by x = g(y) and on the right side by
x = h(y), and below by y = ¢ and above by y = d, then we have:
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Note: If f(x,y) = 1, then [[ f(x,y)dA = [[, 1 dA =Area of the region D.



Ex. Evaluate ffD xzydA, where D is the region bounded by the curves y = x?
and y = 2x.

In this case we can solve this using either method 1 or method 2.

Start by graphing the curves that bound D. Find the points of intersection of the
curves (in this case setting x? = 2x we find x = 0 and x = 2). The points of
intersection are (0,0) and (2,4).
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Method 1:

The bottom curveisy = x2 and the top curve is y = 2X.
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Method 2:

Y : o
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Ex. Evaluate ffD 2xydA where D is the region inside the triangle with vertices
(0,0),(2,2),(6,2).

First find the equations of the 3 sides:

y=%x, y=x, andy = 2.
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Method 1.

Notice that the top curve switches at x = 2 (from y = x to y = 2). Thus we have to
break the integral up into 2 pieces if we want to use this method.
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Method 2 (the easier way for this problem).

The left curve is x = y and the right curve is x = 3y.
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When integrating over a disk, or an annulus, or a portion of a disk or an annulus, it is
often useful to change to polar coordinates:

X = rcoso
y = rsinf
x?+y?% =
dA = rdrdf

Ex. Evaluate ffD (x? + y?*)%dydx; where D = {(x,y)| x% + y? < 4}

First sketch the region D:
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Ex. Evaluate ffD xydA, where D is the set where x* + y? < 9 and x > 0.

First sketch the region D: x? 4+ y2 =09,
x=0
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Since the endpoints of integration are constants and f(r,8) = g(r)h(6) we have
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Ex. Evaluate ffD x2dydx, where D={(x,y)| 1 < x24+y%2 <9, and y < 0}

First sketch the region D.
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Since the endpoints of integration are constants and f(r,0) = g(r)h(6) we have
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Triple Integrals

If the x, y, and z endpoints of integration are all constants, then you are integrating
over a rectangular solid whose sides are parallel to the coordinate planes.

Ex. Evaluate [[f xydW, if W ={(x,y,2)|0<x<3,0<y<1, 0<z<2}
First sketch W'
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If E is bounded above by the surface z = u,(x, y) and below by the surface

z = u4(x,y), and the projection of the solid E into the xy-plane is D then:

fffE f(x'y: Z)dE = ffD fzz:;z((:;;) f(x, Yy, Z)dzdydx

zZ =1u(x,y)

B into xy-plane

Note: If f(x,¥,2) = 1 then [[[,. f(x,y,2)dE = [[[, 1dE = Volume ofE.

Ex. Evaluate fffw x*dW, where

W={(xy2)|x*+y?<1,z>0, x? +y? + 22 < 4}

First sketch the region W:

x?+y*+2z2=4
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Now change to polar coordinates since we are integrating over a disk

x =rcosf, y=rsind, dydx =rdrdf

I, x*aw = fe . fr '(r2 cos 20)(V4 — 12 cos? 0 — r2sin2 0)rdrd6

9 an (r cos? 0)(V4 — r2)rdrde.

Since the endpoints of integration are constants and f(r,0) = g(r)h(6) we have

I, x*aw = (fe 2T 052 0d0)(f::01 r3vV4 —r2dr)

Let’s evaluate each integral separately.
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du = —2rdr whenr =1, u = 3.
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Thus we have:
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