
                                                   Parametrized Surfaces 

     Just as it’s sometimes simpler to represent a curve in ℝ3 (𝑜𝑟 ℝ2) in terms of 

parametric equations: 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡),   𝑧 = 𝑧(𝑡), instead of trying to 

represent it as the intersection of 2 surfaces, 𝑧 = 𝑓(𝑥, 𝑦)  and 𝑧 = 𝑔(𝑥, 𝑦) (which 

can’t always be done), it is sometimes simpler to represent a surface in ℝ3 in 

parametric form:  𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣), 𝑧 = 𝑧(𝑢, 𝑣),  instead of 𝑧 = 𝑓(𝑥, 𝑦)  

(which can’t always be done).  

 

Ex.  Even a simple surface like the cylinder 𝑥2 + 𝑧2 = 4, can’t be represented as a 

simple function 𝑧 = 𝑓(𝑥, 𝑦) (in this case we would have 2 functions 𝑧 = √4 − 𝑥2 

and 𝑧 = −√4 − 𝑥2).  However, parametrically we can represent this cylinder by:    

 𝑥 = 2𝑐𝑜𝑠𝑢,     𝑦 = 𝑣,    𝑧 = 2𝑠𝑖𝑛𝑢 ;     0 ≤ 𝑢 ≤ 2𝜋, 𝑣 ∈ ℝ (notice that 𝑥, 𝑦, and 𝑧 

have to satisfy the original equation: 𝑥2 + 𝑧2 = 4).  

 

In general, we can represent a surface in parametric form as:  

𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣), 𝑧 = 𝑧(𝑢, 𝑣),  and in vector form by: 

𝛷⃗⃗ (𝑢, 𝑣) =< 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣) >;   where 𝛷⃗⃗  : 𝐷 ⊂ ℝ2 → ℝ3. 

The surface, S, is the image of 𝛷⃗⃗  ,  i.e. 𝛷⃗⃗ (𝐷), and 𝛷⃗⃗   is called a parametrization of 

S.  For any surface there are an infinite number of parametrizations. 

S is called a Differentiable Surface, (or a 𝑪𝟏 Surface) if 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣),  

are differentiable (or 𝐶1) 

Ex.  𝛷⃗⃗ (𝑢, 𝑣) =< 2𝑐𝑜𝑠𝑢, 𝑣, 2𝑠𝑖𝑛𝑢 >,   0 ≤ 𝑢 ≤ 2𝜋, 𝑣 ∈ ℝ  is a 

parametrization of the  circular cylinder 𝑥2 + 𝑧2 = 4.                                               

(Notice: 𝑥2 + 𝑧2 =(2𝑐𝑜𝑠𝑢)2 + (2𝑠𝑖𝑛𝑢)2 = 4).  

 

 

𝑥 

𝑧 
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Ex.  Notice that any surface 𝑧 = 𝑓(𝑥, 𝑦);  e.g.,  𝑧 = 𝑥2 + 𝑦2, can be 

parametrized by:   𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑓(𝑢, 𝑣),  ie,                                          

                             𝛷⃗⃗⃗ (𝑢, 𝑣) =< 𝑢,𝑣,𝑓(𝑢, 𝑣) >.              

In the case of  

𝑧 = 𝑥2 + 𝑦2;    𝑥 = 𝑢,    𝑦 = 𝑣,      𝑧 = 𝑢2 + 𝑣2,  i.e.,                                                

              𝛷⃗⃗⃗ (𝑢, 𝑣) =< 𝑢,𝑣, 𝑢2 + 𝑣2 >.    

 

 

Ex.  (Important Example)  Find a parametrization of the sphere of radius R,       

       𝑥2 + 𝑦2 + 𝑧2 = 𝑅2.  

  One standard parametrization is to use spherical coordinates: 

𝑥 = 𝑅 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙   

𝑦 = 𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙  

𝑧 = 𝑅𝑐𝑜𝑠𝜙    

 

where  0 ≤ 𝜙 ≤ 𝜋,  and  0 ≤ 𝜃 ≤ 2𝜋. 

 

 

𝑥 

𝑦 

𝑥 

𝑦 

𝑧 
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Equivalently we could write:   

 𝛷⃗⃗ (𝜙, 𝜃) =< 𝑅 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙,  𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,  𝑅𝑐𝑜𝑠𝜙 >;  

 0 ≤ 𝜙 ≤ 𝜋,  and  0 ≤ 𝜃 ≤ 2𝜋.   

 

Notice:     𝑥2 + 𝑦2 + 𝑧2 = (𝑅 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)2 + (𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)2 + (𝑅𝑐𝑜𝑠𝜙 )2 

                                         = 𝑅2(𝑠𝑖𝑛𝜙)2(𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃) + (𝑅𝑐𝑜𝑠𝜙 )2 

                                          = 𝑅2(𝑠𝑖𝑛2𝜙) + 𝑅2(𝑐𝑜𝑠2𝜙) = 𝑅2. 

 

Ex.  Find a parametrization of the ellipsoid  
𝑥2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 = 1. 

Again, using spherical coordinates we get: 

𝑥 = 𝑎(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)       

𝑦 = 𝑏(𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)  

𝑧 = 𝑐(𝑐𝑜𝑠𝜙)   

Where  0 ≤ 𝜙 ≤ 𝜋,  and  0 ≤ 𝜃 ≤ 2𝜋. 

Equivalently we could write:   

 𝛷⃗⃗ (𝜙, 𝜃) =< 𝑎𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙,  𝑏𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,  𝑐𝑐𝑜𝑠𝜙 >;  

 0 ≤ 𝜙 ≤ 𝜋,  and  0 ≤ 𝜃 ≤ 2𝜋.  

Notice that: 

   (
𝑥

𝑎
)2 + (

𝑦

𝑏
)2 + (

𝑧

𝑐
)2 = 𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜙 + 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜙 + 𝑐𝑜𝑠2𝜙 = 1. 
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Tangent Planes to Parametrized Surfaces 

Let 𝛷⃗⃗  be a differentiable parametrization of a surface S, 

 𝛷⃗⃗ (𝑢, 𝑣) =< 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣) >;  with   𝛷⃗⃗ (𝑢0, 𝑣0) = 𝑃, 

𝑇⃗ 𝑢 =
𝜕𝛷⃗⃗⃗ 

𝜕𝑢
= <

𝜕𝑥

𝜕𝑢
,

𝜕𝑦

𝜕𝑢
,

𝜕𝑧

𝜕𝑢
>,      𝑇⃗ 𝑣 =

𝜕𝛷⃗⃗⃗ 

𝜕𝑣
= <

𝜕𝑥

𝜕𝑣
,

𝜕𝑦

𝜕𝑣
,

𝜕𝑧

𝜕𝑣
> .     

 

                                                     

 

                                           

 

 

 

At a fixed point  (𝑢0, 𝑣0) ,  the vectors   𝑇⃗ 𝑢(𝑢0, 𝑣0)  and   𝑇⃗ 𝑣(𝑢0, 𝑣0)  are tangent 

to the surface S at 𝛷⃗⃗ (𝑢0, 𝑣0).  If   𝑇⃗ 𝑢(𝑢0, 𝑣0) × 𝑇⃗ 𝑣(𝑢0, 𝑣0) ≠ 0, then the 

surface is called Regular, or Smooth, at  𝛷⃗⃗ (𝑢0, 𝑣0).   The surface S is called 

Regular or Smooth if  𝑇⃗ 𝑢(𝑢, 𝑣) × 𝑇⃗ 𝑣(𝑢, 𝑣) ≠ 0 for all points  𝛷⃗⃗ (𝑢, 𝑣) ∈ 𝑆.   

  

If  𝑇⃗ 𝑢(𝑢0, 𝑣0) × 𝑇⃗ 𝑣(𝑢0, 𝑣0) ≠ 0 at a fixed point  (𝑢0, 𝑣0), then  

𝑇⃗ 𝑢(𝑢0, 𝑣0) × 𝑇⃗ 𝑣(𝑢0, 𝑣0) is normal (perpendicular) to the surface S at 

𝛷⃗⃗ (𝑢0, 𝑣0). 

We can use this fact to find an equation of the tangent plane to S at 𝛷⃗⃗ (𝑢0, 𝑣0). 

 

(𝑢0, 𝑣0) 𝛷⃗⃗  

𝑢 

𝑣 

𝑆 

𝛷⃗⃗ (𝑢, 𝑣0) 

𝑇𝑢
⃗⃗⃗⃗ (𝑢0, 𝑣0) 

𝛷⃗⃗ (𝑢0, 𝑣) 

𝑇𝑣
⃗⃗  ⃗(𝑢0, 𝑣0) 

𝑃 
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Ex.   Consider the surface given by:  𝑥 = 𝑢𝑐𝑜𝑠𝑣, 𝑦 = 𝑢𝑠𝑖𝑛𝑣, 𝑧 = 𝑢;  where 𝑢 ≥ 0,

0 ≤ 𝑣 ≤ 2𝜋. Identify the surface, determine where it is smooth, and find an 

equation for the tangent plane at 𝑢 = 1, 𝑣 =
𝜋

2
 .  

 

𝑥2 + 𝑦2 = 𝑢2(𝑐𝑜𝑠2𝑣) + 𝑢2(𝑠𝑖𝑛2𝑣) = 𝑢2 = 𝑧2  

𝑧2 = 𝑥2 + 𝑦2;  where 𝑢 = 𝑧 ≥ 0.  This is the upper half of a cone about the         

𝑧-axis. 

 

 

 

 

 

 

 

 

 

 

 

𝑇⃗ 𝑢 =
𝜕𝛷⃗⃗⃗ 

𝜕𝑢
= <

𝜕𝑥

𝜕𝑢
,

𝜕𝑦

𝜕𝑢
,

𝜕𝑧

𝜕𝑢
>=< 𝑐𝑜𝑠𝑣, 𝑠𝑖𝑛𝑣, 1 > 

𝑇⃗ 𝑣 =
𝜕𝛷⃗⃗⃗ 

𝜕𝑣
= <

𝜕𝑥

𝜕𝑣
,

𝜕𝑦

𝜕𝑣
,

𝜕𝑧

𝜕𝑣
>=< −𝑢𝑠𝑖𝑛𝑣, 𝑢𝑐𝑜𝑠𝑣, 0 >. 

𝑥 

𝑦 

𝑧 
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 𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 = |
𝑖 𝑗 𝑘⃗ 

𝑐𝑜𝑠𝑣 𝑠𝑖𝑛𝑣 1
−𝑢𝑠𝑖𝑛𝑣 𝑢𝑐𝑜𝑠𝑣 0

| 

                = |
𝑠𝑖𝑛𝑣 1
𝑢𝑐𝑜𝑠𝑣 0

| 𝑖 − |
𝑐𝑜𝑠𝑣 1

−𝑢𝑠𝑖𝑛𝑣 0
| 𝑗 + |

𝑐𝑜𝑠𝑣 𝑠𝑖𝑛𝑣
−𝑢𝑠𝑖𝑛𝑣 𝑢𝑐𝑜𝑠𝑣

| 𝑘⃗  

 

𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 = (−𝑢𝑐𝑜𝑠𝑣)𝑖 − (𝑢𝑠𝑖𝑛𝑣)𝑗 + 𝑢(𝑐𝑜𝑠2𝑣 + 𝑠𝑖𝑛2𝑣)𝑘⃗  

               = (−𝑢𝑐𝑜𝑠𝑣)𝑖 − (𝑢𝑠𝑖𝑛𝑣)𝑗 + 𝑢𝑘⃗ . 

 

We want to know when 𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 = 0 (that will tell us where the surface is NOT 

smooth).  Notice that 𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 = 0 exactly when |𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 | = 0.   

 

In this case that means:     √𝑢2𝑐𝑜𝑠2𝑣 + 𝑢2𝑠𝑖𝑛2𝑣 + 𝑢2 = |𝑢|√2 = 0. 

This happens when 𝑢 = 0.  So what point(s) on the surface have 𝑢 = 0? 

𝑢 = 0 at the point (0,0,0).  So (0,0,0) is the only point on S where S is NOT 

smooth. 

 

To find an equation of the tangent plane at 𝑢 = 1, 𝑣 =
𝜋

2
, we need to find  

𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 at 𝑢 = 1, 𝑣 =
𝜋

2
 .  

We know: 𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 = (−𝑢𝑐𝑜𝑠𝑣)𝑖 − (𝑢𝑠𝑖𝑛𝑣)𝑗 + 𝑢𝑘⃗ . 

So at 𝑢 = 1, 𝑣 =
𝜋

2
,  𝑇⃗ 𝑢 × 𝑇⃗ 𝑣 = −𝑗 + 𝑘⃗ .                                                                                 

This vector is perpendicular to the tangent plane at 𝑢 = 1, 𝑣 =
𝜋

2
 . 
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Now we need the point (𝑥, 𝑦, 𝑧) on the surface that corresponds to                     

𝑢 = 1, 𝑣 =
𝜋

2
 .   

𝑥 = 𝑢𝑐𝑜𝑠𝑣,    𝑦 = 𝑢𝑠𝑖𝑛𝑣,    𝑧 = 𝑢 ;           plugging in  𝑢 = 1, 𝑣 =
𝜋

2
 , we get: 

𝑥 = 0              𝑦 = 1             𝑧 = 1. 

 

Normal vector 𝑁⃗⃗ =< 0,−1, 1 >;  point= (0,1,1) 

Equation of tangent plane:   0(𝑥 − 0) − 1(𝑦 − 1) + 1(𝑧 − 1) = 0         

or,        −𝑦 + 𝑧 = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑧 = 𝑦 
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Ex.   Consider the surface in ℝ3 (called a helicoid) parametrized by             

𝛷⃗⃗ (𝑟, 𝜃) =< 𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃, 𝜃 >;  where 0 ≤ 𝑟 ≤ 1 and 0 ≤ 𝜃 ≤ 2𝜋.           
a) sketch the surface,  b) show the surface is regular (ie smooth) everywhere,        

c) find a unit normal vector at 𝛷⃗⃗ (𝑟, 𝜃), and  d) find an equation of the tangent 

plane at 𝑟 =
1

2
  and  𝜃 =

𝜋

4
 .  

 

a)  For any fixed value of 𝑟, 0 ≤ 𝑟 ≤ 1,   𝛷⃗⃗ (𝑟, 𝜃) =< 𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃, 𝜃 > is 

just part of a helix. 

 

 

 

 

 

 

 

 

b)   𝑇⃗ 𝑟 =< 𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃, 0 >                𝑇⃗ 𝜃 =< −𝑟𝑠𝑖𝑛𝜃, 𝑟𝑐𝑜𝑠𝜃, 1 >      

𝑇⃗ 𝑟 × 𝑇⃗ 𝜃 =   |
𝑖 𝑗 𝑘⃗ 

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑟𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃 1

| = 𝑠𝑖𝑛𝜃𝑖 − 𝑐𝑜𝑠𝜃𝑗 + 𝑟𝑘⃗  . 

 

We need to show that    𝑇⃗ 𝑟 × 𝑇⃗ 𝜃 ≠ 0  for all 0 ≤ 𝑟 ≤ 1 and 0 ≤ 𝜃 ≤ 2𝜋.  

That’s the same thing as showing that |𝑇⃗ 𝑟 × 𝑇⃗ 𝜃| ≠ 0.  
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|𝑇⃗ 𝑟 × 𝑇⃗ 𝜃| = √𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 + 𝑟2 = √1 + 𝑟2 ≠ 0   anywhere, so S is 

smooth everywhere.  

 

c)  𝑇⃗ 𝑟 × 𝑇⃗ 𝜃 is a normal vector at 𝛷⃗⃗ (𝑟, 𝜃),   but its length is not 1 everywhere.  So 

we need to divide this vector by its length to get a unit normal vector. 

Unit normal= 𝑛⃗ =
𝑇⃗ 𝑟× 𝑇⃗ 𝜃

|𝑇⃗ 𝑟× 𝑇⃗ 𝜃|
  

                   =
𝑠𝑖𝑛𝜃𝑖 −𝑐𝑜𝑠𝜃𝑗 +𝑟𝑘⃗ 

√1+𝑟2
=

𝑠𝑖𝑛𝜃

√1+𝑟2
𝑖 −

𝑐𝑜𝑠𝜃

√1+𝑟2
𝑗 +

𝑟

√1+𝑟2
𝑘⃗ . 

 

d)  A normal vector at 𝑟 =
1

2
  and  𝜃 =

𝜋

4
 is given by evaluating 𝑇⃗ 𝑟 × 𝑇⃗ 𝜃(

1

2
 ,

𝜋

4
). 

𝑇⃗ 𝑟 × 𝑇⃗ 𝜃 =  𝑠𝑖𝑛𝜃𝑖 − 𝑐𝑜𝑠𝜃𝑗 + 𝑟𝑘⃗  

at 𝑟 =
1

2
  and  𝜃 =

𝜋

4
   we get:      𝑇⃗ 𝑟 × 𝑇⃗ 𝜃 = 

√2

2
𝑖 −

√2

2
𝑗 +

1

2
𝑘⃗ .     

 

So a normal vector to the tangent plane at 𝛷⃗⃗ (
1

2
,
𝜋

4
) is <

√2

2
, −

√2

2
,
1

2
>.   

 

We need to find the point (𝑥, 𝑦, 𝑧) that corresponds to 𝑟 =
1

2
  and  𝜃 =

𝜋

4
 .   

𝛷⃗⃗ (𝑟, 𝜃) =< 𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃, 𝜃 >;  so  𝛷⃗⃗ (
1

2
,
𝜋

4
) =<

√2

4
,
√2

4
,
𝜋

4
>.   

 

Eq. of tangent plane:         
√2

2
(𝑥 −

√2

4
) −

√2

2
(𝑥 −

√2

4
) +

1

2
(𝑧 −

𝜋

4
) = 0. 


