Parametrized Surfaces

Just as it’s sometimes simpler to represent a curve in R3 (or R?) in terms of
parametric equations: x = x(t), y = y(t), z = z(t), instead of trying to
represent it as the intersection of 2 surfaces, z = f(x,y) and z = g(x, y) (which
can’t always be done), it is sometimes simpler to represent a surface in R3 in
parametric form: x = x(u,v), vy = y(u,v), z = z(u,v), instead of z = f(x,y)
(which can’t always be done).

Ex. Even a simple surface like the cylinder x? 4+ z? = 4, can’t be represented as a
simple function z = f(x, y) (in this case we would have 2 functions z = V4 — x2

and z = —V4 — x2). However, parametrically we can represent this cylinder by:
x =2cosu, y=v, z=2sinu; 0<u<2nm veER|(noticethatx,y,andz
have to satisfy the original equation: x? + z2 = 4).

In general, we can represent a surface in parametric form as:
x =x(,v), y=yW,v), z=2z(u,v), andin vector form by:
®(u,v) =< x(u,v),y(w,v), z(u,v) >; where®:D c R? > R3,

The surface, S, is the image of @ , i.e. E(D), and @ is called a parametrization of
S. For any surface there are an infinite number of parametrizations.

S is called a Differentiable Surface, (or a C! Surface) if x(u, v), y(u,v), z(u,v),
are differentiable (or C1)

EX. 5(u, v) =< 2cosu,v,2sinu >, 0<u<2m, vER isa
parametrization of the circular cylinder x? + z2 = 4.
(Notice: x2 + z2 =(2cosu)? + (2sinu)? = 4).




Ex. Notice that any surface z = f(x,y); e.g., Z = x% + yz, can be
parametrizedby: x =u, y =v, z = f(u,v), ie,
5(u, v) =<u, v fu,v) >

In the case of

z=x*+y?% x=u, y=v, z=u?+71? ie,

D, v) =< u, v, u? + v? >.

Ex. (Important Example) Find a parametrization of the sphere of radius R,
x% + y% + z% = R,

One standard parametrization is to use spherical coordinates:
X = R cosOsing
y = RsinfOsing
Z = Rcos¢

where 0 < ¢p <m, and 0 <0 < 2m.




Equivalently we could write:
®(p,0) =< R cosOsind, Rsinbsing, Rcosd >;

0<¢<m and 0 <0 <2m.

Notice: x?% + y? + z2 = (R cosOsing)? + (Rsinfsing)? + (Rcosg )?
= R?(sing)?(cos?0 + sin?0) + (Rcos¢ )*

= R?(sin?¢) + R*(cos?¢®) = R?.
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Ex. Find a parametrization of the ellipsoid =z + 2 + Z = 1.

Again, using spherical coordinates we get:

x = a(cosOsing)

y = b(sinfsing)

z = c(coso)

Where 0 < ¢ <m, and 0 <0 < 2m.

Equivalently we could write:

®(p,0) =< acosBsing, bsinbsing, ccosep >;
0<¢p<mand 0 <6 <2m.

Notice that:

(g)z + (%)2 + (%)2 = cos*Osin*¢ + sin*Osin’¢p + cos?¢p = 1.



Tangent Planes to Parametrized Surfaces

Let @ be a differentiable parametrization of a surface S,

®(u,v) =< x(u,v),y(W,v),z(w,v) >; with G(ug,v,) = P,

;9B _ox oy o
U™ u  ou’ ou’ ou”’

Sl

(uo,|vo)

——,,— e

At a fixed point (ug,vy), the vectors Tu(uo, Vo) and ﬁ,(uo, Vo) are tangent
to the surface S at 5(110, Vo). If Tu (ug, vg) X ﬁ,(uo, Vo) # 0, then the
surface is called Regular, or Smooth, at 5(110, 170). The surface S is called

Regular or Smooth if Tu(u, v) X ﬁ,(u, v) # 0 for all points ®(u,v) €S.

If Tu(uo, Vo) X Tv(uo, Vo) # 0 ata fixed point (ug, vg), then

Tu (ug, vg) X Tv(uo, Vg) is normal (perpendicular) to the surface S at
CD(uO, vo).

We can use this fact to find an equation of the tangent plane to S at CD(uO, vo).



Ex. Consider the surface given by: x = ucosv, y = usinv, z = u; whereu = 0,

0 < v < 2m. Ildentify the surface, determine where it is smooth, and find an
equation for the tangent planeatu =1, v = g

x? + y? = u?(cos?v) + u?(sin*v) = u? = z*

72 =x% + yz; where u = z = 0. This is the upper half of a cone about the

Z-axis.
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T, X T, = (—ucosv)l — (usinv)j + u(cos?v + sin?v)k

= (—ucosv)l — (usinv)j + uk.

—

We want to know when 7 0 (that will tell us where the surface is NOT

u X
f 0 exactly when Tu X ﬁ, | = 0.

smooth). Notice that T

In this case that means:  Vu2cos2v + u2sin?v + u? = |u|lvV2 = 0.
This happens when 1 = 0. So what point(s) on the surface have u = 0?

u = 0 at the point (0,0,0). So (0,0,0) is the only point on S where S is NOT
smooth.

To find an equation of the tangent planeatu = 1,v = g, we need to find

l

We know: Ty, X T, = (—ucosv)i — (usinv)] + uk.

Soatu = 1,v=§, TuXTv = —]_)+i€.

YA
This vector is perpendicular to the tangent planeatu = 1,v = >



Now we need the point (x, y, z) on the surface that corresponds to

u=1, v="=C,
2
. T
X =Ucosv, y =usinv, z=u, pluggingin u = 1,v = E,we get:
x=0 y=1 z=1.

Normal vector N =< 0,—1,1 >; point= (0,1,1)
Equation of tangent plane: 0(x —0) —1(y—1)+1(z—1) =0

o, —-y+z=0.




Ex. Consider the surface in R3 (called a helicoid) parametrized by
5(7’, 0) =< rcos0,rsinf,0 >; where)0 <r<1land0 <0 < 2m.
a) sketch the surface, b) show the surface is regular (ie smooth) everywhere,

c) find a unit normal vector at 5(7‘, 0), and d) find an equation of the tangent

1 s
planeatr = - and 6 = —.
2 4

a) Forany fixedvalueofr, 0 <r <1, 5(1’, 0) =< rcosf,rsinb, 0 > is
just part of a helix. 8

b) ﬁ =< co0s0, sin6,0 > 79 =< —rsinf,rcosf,1 >

L { ]k .

T, XTog= | cos&®  sing 0| =sindl— cosbj+rk.
—rsin@ rcosf 1

We need to show that ﬁ, X Tg #0 foral0 <r<1land0 <60 < 2m.
That’s the same thing as showing that |Tr X Tgl # 0.



|i X Tg' = Vsin20 + cos20 + r2 =+vV1+1r2 £ 0 anywhere,s0S s

smooth everywhere.

c) T, X Ty is a normal vector at @ (1, 8), butits length is not 1 everywhere. So
we need to divide this vector by its length to get a unit normal vector.

Unitnormal= N = =5————
|Ty-x To|
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d) A normalvectoratr = > and 8 = " is given by evaluating T,- X Ty (E ,Z).

T. x Ty = sin67i — cos6] + rk

1 - - \/E—) \/E—) 17
atr =-and 8 == weget: T, X g = —Ll——J+-k.
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So a normal vector to the tangent plane at (’D(E’Z) is < —, ——,5 >

We need to find the point (x, y, z) that correspondstor = - and 8 = % .
= ) 17 V2 V2 @
&(r,0) =< rcosO,rsinf, 8 >; so @ (5,—) =<7

Eq. of tangent plane: V2 (x — Q) _¥z (x — Q) + % (Z — E) = 0.
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