Line Integrals

We can represent a path or curve, c, in the plane in the following 3 ways:

1.
$$\vec{c}(t) = \langle x(t), y(t) \rangle$$
 (vector form of a curve)

2.
$$\vec{c}(t) = x(t)\vec{i} + y(t)\vec{j}$$
 (another vector form of a curve)

3.
$$x = x(t)$$
, $y = y(t)$ (parametric form of a curve)

In each case t will be in some interval (eg, $a \le t \le b$)

From first year calculus we know that the length of a curve, x = x(t), y = y(t), $a \le t \le b$, which we can also write as $\vec{c}(t) = \langle x(t), y(t) \rangle$, is given by:

Length of curve=
$$\int_c^b ds = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_a^b |\vec{c}'(t)| dt$$

where c(a) and c(b) are the endpoint of the curve c, $|\vec{c}'(t)|$ is the length of the velocity vector of $\vec{c}(t)$, and the curve is C^1 , i.e., x'(t), and y'(t) are continuous.

We define a **line (or path) integral** of a function f(x, y) over a C^1 curve c, in the plane by:

$$\int_{c} f(x,y)ds = \int_{a}^{b} f(x(t),y(t))|\vec{c}'(t)|dt.$$

If the curve c is in 3-space rather than the plane then we have:

$$\int_{c} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) |\vec{c}'(t)| dt$$

Notice that if f(x, y, z) = 1, then $\int_{c}^{b} f(x, y, z) ds = \int_{c}^{b} |\vec{c}'(t)| dt$ which is just the length of the curve c.

Ex. Evaluate $\int_{c} y(sinz)ds$; where c is the helix

x(t) = cost, y(t) = sint, z(t) = t; where $0 \le t \le 2\pi$.

Notice we could write this curve as $\vec{c}(t) = \cos t$, $\sin t$, $t > \cos t \le 2\pi$.

$$\vec{c}'(t) = \langle -\sin t, \cos t, 1 \rangle \Rightarrow |\vec{c}'(t)| = \sqrt{\cos^2 t + \sin^2 t + 1} = \sqrt{2}.$$

$$f(x(t), y(t), z(t)) = y(\sin z) = (\sin t)(\sin t).$$

$$\int_{a}^{b} f(x(t), y(t), z(t)) |\vec{c}'(t)| dt
= \int_{0}^{2\pi} (sint)(sint)(\sqrt{2}) dt = \sqrt{2} \int_{0}^{2\pi} (sin^{2}t) dt.$$

Remember: $sin^2t=\frac{1}{2}-\frac{\cos(2t)}{2}$ and $cos^2t=\frac{1}{2}+\frac{\cos(2t)}{2}$; we will need these formulas often!

$$\sqrt{2} \int_0^{2\pi} (\sin^2 t) dt = \sqrt{2} \int_0^{2\pi} (\frac{1}{2} - \frac{\cos(2t)}{2}) dt = \sqrt{2} (\frac{1}{2}t - \frac{\sin(2t)}{4}) \Big|_0^{2\pi}$$
$$= \sqrt{2} \left[\left(\frac{1}{2}(2\pi) - 0 \right) - (0 - 0) \right] = \sqrt{2}\pi.$$

- Write down a definite integral that represents the length of the curve given by $c: [0,2] \rightarrow < t, t^2 >$. (or we might say $c: [0,2] \rightarrow t\vec{i} + (t^2)\vec{j}$)
 - Find $\int_C f(x,y)ds$ where f(x,y) = 2x.

a. Length of a curve= $\int_c^b ds = \int_a^b |\vec{c}'(t)| dt$

$$\vec{c}(t) = \langle t, t^2 \rangle$$
, $\vec{c}'(t) = \langle 1, 2t \rangle$, $|\vec{c}'(t)| = \sqrt{1 + 4t^2}$,

$$\vec{c}'(t) = <1, 2t>,$$

$$|\vec{c}'(t)| = \sqrt{1 + 4t^2}$$

Length of curve= $\int_{c}^{b} ds = \int_{a}^{b} |\vec{c}'(t)| dt = \int_{t=0}^{t=2} \sqrt{1 + 4t^2} dt$.

b.
$$f(x(t), y(t)) = 2x = 2t$$

$$\int_{c} f(x,y)ds = \int_{a}^{b} f(x(t), y(t))|\vec{c}'(t)|dt$$
$$= \int_{t=0}^{t=2} 2t\sqrt{1 + 4t^{2}} dt$$

Let
$$u = 1 + 4t^2$$

when
$$t = 0$$
, $u = 1$,

$$\frac{1}{4}du = 8tdt$$

$$\frac{1}{4}du = 8tdt \qquad \text{when } t = 2, \ u = 17.$$

$$\int_{t=0}^{t=2} 2t\sqrt{1+4t^2} \, dt = \int_{u=1}^{u=17} u^{\frac{1}{2}} \left(\frac{1}{4}\right) du = \frac{1}{4} \left(\frac{2}{3}\right) u^{\frac{3}{2}} \Big|_{1}^{17}$$

$$=\frac{1}{6}\left(17^{\frac{3}{2}}-1^{\frac{3}{2}}\right)=\frac{1}{6}\left(17\sqrt{17}-1\right).$$

Ex. Find $\int_c xe^{yz}ds$, where c is the line segment from (0,0,0) to (1,2,3).

To do this problem we first need to find a parametrization of the line segment. We can find an equation of a line through the 2 points by finding the direction vector and then using either point (although (0,0,0) is easier).

Direction vector $\vec{v} = <1-0, \ 2-0, \ 3-0> = <1,2,3>$;

So an equation of the line is given by:

$$x = 0 + t = t$$
, $y = 0 + 2t = 2t$, $z = 0 + 3t = 3t$; or

 $\vec{c}(t) = < t, 2t, 3t >$. We just want the line segment between (0,0,0) and (1,2,3). Notice that means that $0 \le t \le 1$.

$$\begin{aligned} \vec{c}'(t) = &< 1,2,3 > \qquad |\vec{c}'(t)| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \\ f\left(x(t), y(t), z(t)\right) = xe^{yz} = (t)\left(e^{(2t)(3t)}\right) = te^{6t^2} \\ \int_c xe^{yz}ds = \int_{t=0}^{t=1} te^{6t^2}\sqrt{14} \ dt \\ \text{Let } u = 6t^2; \qquad \text{when } t = 0, \ u = 0 \\ du = 12tdt \qquad \text{when } t = 1, \ u = 6 \\ \frac{1}{12}du = tdt \\ \int_c xe^{yz}ds = \int_{t=0}^{t=1} te^{6t^2}\sqrt{14} \ dt = \int_{u=0}^{u=6} e^u\left(\frac{1}{12}\right)\sqrt{14} \ du = \frac{\sqrt{14}}{12}e^u\Big|_0^6 \\ = \frac{\sqrt{14}}{12}\left(e^6 - e^0\right) = \frac{\sqrt{14}}{12}\left(e^6 - 1\right). \end{aligned}$$

Ex. Find $\int_c f(x,y)ds$ where f(x,y)=xy and the curve is $y=x^4$ for $0 \le x \le 1$.

When we have a curve given as y = f(x),

we can parametrize it as

$$x = t$$
, $y = f(t)$.

That means $\vec{c}(t) = \langle t, f(t) \rangle$.

In this case: $\vec{c}(t) = \langle t, t^4 \rangle$.

$$\vec{c}'(t) = <1, 4t^3>,$$

$$|\vec{c}'(t)| = \sqrt{1 + 16t^6}$$

$$f(x(t), y(t)) = t(t^4) = t^5$$

$$\int_{c} f(x,y)ds = \int_{t=0}^{t=1} t^{5} \sqrt{1 + 16t^{6}} dt$$
 Let $u = 1 + 16t^{6}$ when $t = 0$, $u = 1$
$$du = 96t^{5} dt \qquad \text{when } t = 1, \ u = 17$$

$$\frac{1}{96} du = t^{5} dt$$

$$\int_{c} f(x,y)ds = \int_{t=0}^{t=1} t^{5} \sqrt{1 + 16t^{6}} dt = \int_{u=1}^{u=17} u^{\frac{1}{2}} \left(\frac{1}{96}\right) du$$
$$= \left(\frac{1}{96}\right) \left(\frac{2}{3}\right) u^{\frac{3}{2}} \Big|_{1}^{17} = \frac{1}{144} \left(17\sqrt{17} - 1\right).$$

Ex. Find the center of mass of a wire in the shape of a semicircle, $x^2 + y^2 = 4$,

$$x \ge 0$$
, if the density is 5 grams/unit length.

Mass=
$$\int_{c} \rho(x,y)ds$$
;

where $\rho(x,y)$ is the density at a point (x,y).

The center of mass is given by (\bar{x}, \bar{y}) , where:

$$\bar{x} = \frac{1}{mass} \int_{c} (x) \rho(x, y) ds,$$

$$\bar{y} = \frac{1}{mass} \int_{c} (y) \rho(x, y) ds.$$

Parametrize the semicircle by:

$$x = 2cost, y = 2sint, -\frac{\pi}{2} \le t \le \frac{\pi}{2}.$$
So $\vec{c}(t) = <2cost, 2sint >, -\frac{\pi}{2} \le t \le \frac{\pi}{2}.$

$$\vec{c}'(t) = \langle -2\sin t, 2\cos t \rangle, \quad |\vec{c}'(t)| = \sqrt{4\sin^2 t + 4\cos^2 t} = \sqrt{4} = 2$$

$$\rho(x(t), y(t)) = 5$$

Mass=
$$\int_{c} \rho(x,y)ds = \int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}} 5(2)dt = 10\pi.$$

$$\bar{x} = \frac{1}{mass} \int_{c} (x) \rho(x, y) ds = \frac{1}{10\pi} \int_{t = -\frac{\pi}{2}}^{t = \frac{\pi}{2}} (2\cos t) 5(2) dt = \frac{2}{\pi} \sin t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{4}{\pi}$$

$$\bar{y} = \frac{1}{mass} \int_{c} (y) \rho(x, y) ds = \frac{1}{10\pi} \int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}} (2sint) 5(2) dt$$

$$=\frac{20}{10\pi}\int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}}(sint)dt = -\frac{2}{\pi}cost\Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 0.$$