Integrating Differential Forms over Subsets of \mathbb{R}^3 -HW Problems

Evaluate.

1.
$$\int_c \omega$$
; $\omega = xyzdx + yzdy + zdz$, $\vec{c}(t) = \langle t, t^2, t^3 \rangle$, $0 \le t \le 1$

2.
$$\int_{c} f\omega; \qquad \omega = (x^{2} + y^{2} + z^{2})dx + xydy + yzdz,$$

$$f(x, y, z) = y$$

$$\vec{c}(t) = <1, t, t^{3} > , 0 \le t \le 1$$

3.
$$\iint_{S} \eta; \qquad \eta = xydxdy$$

$$S \text{ is the portion of the sphere } x^2 + y^2 + z^2 = 1,$$
 and $x \ge 0$. $y \ge 0$, $z \ge 0$.

4.
$$\iint_{S} \eta; \qquad \eta = y^{2} dx dy + x dy dz$$

$$S \text{ is the portion of the cone } \overrightarrow{\Phi}(r,\theta) = < r cos(\theta), r sin(\theta), r >;$$

$$0 \le r \le 2, \quad 0 \le \theta \le 2\pi.$$

5.
$$\iiint_{W} \varphi; \qquad \varphi = (x^2 + y^2 + z) dx dy dz$$
$$W = [0,1] \times [0,3] \times [1,2].$$