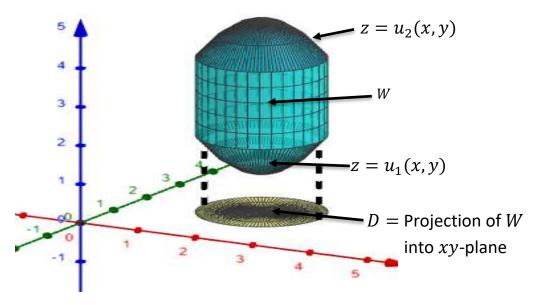
The Divergence Theorem (Gauss' Theorem)

Gauss's divergence theorem says that the flux of a vector field out of a closed surface equals the integral of the divergence over the volume enclosed by the surface, ie, $\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} Div \vec{F} dV$; where ∂W is a closed surface.

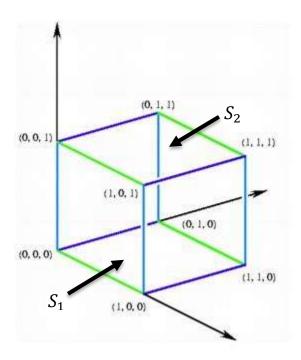
We begin by looking at Elementary Regions (eg, W below), ie regions bounded by, for example, $z=u_1(x,y)$ and $z=u_2(x,y)$, whose projection, D, into the xy-plane is bounded by $y=g_1(x)$ and $y=g_2(x)$, x=a and x=b.



Ex. A cube is an elementary region (as is a sphere). Let's take the cube W

$$0 \le x \le 1$$
, $0 \le y \le 1$, $0 \le z \le 1$.

$$S_1$$
: $z = 0$, $0 \le x \le 1$, $0 \le y \le 1$
 S_2 : $z = 1$, $0 \le x \le 1$, $0 \le y \le 1$
 S_3 : $x = 0$, $0 \le y \le 1$, $0 \le z \le 1$
 S_4 : $x = 1$, $0 \le y \le 1$, $0 \le z \le 1$
 S_5 : $y = 0$, $0 \le x \le 1$, $0 \le z \le 1$
 S_6 : $y = 1$, $0 \le x \le 1$, $0 \le z \le 1$



$$\iint_{S} \vec{F} \cdot d\vec{S} = \sum_{i=1}^{6} \iint_{S_{i}} \vec{F} \cdot d\vec{S}_{i} = \sum_{i=1}^{6} \iint_{S_{i}} (\vec{F} \cdot \vec{n}_{i}) dS_{i}$$

Since
$$d\vec{S}_i = (\vec{n}_i)dS_i$$
; $dS_i = |\vec{T}_u \times \vec{T}_v|dudv$

In the case of this unit cube, $\ \vec{n}_1=-\vec{k}$, $\ \vec{n}_2=\vec{k}$, $\ \vec{n}_3=-\vec{\iota}$, $\ \vec{n}_4=\vec{\iota}$, $\ etc.$

So, for example,
$$\iint_{S_3} (\vec{F} \cdot \vec{n}_3) dS_3 = \iint_{S_i} (\vec{F}) \cdot (-\vec{\iota}) dS_3 = \iint_{S_i} -F_1 dS_3$$
.

Theorem (Gauss' Divergence Theorem) Let W be a symmetric elementary region in \mathbb{R}^3 . Denote ∂W as the oriented closed surface that bounds W. Let \vec{F} be a smooth vector field on W. Then

$$\iiint_{W} Div \vec{F} dV = \iiint_{W} \nabla \cdot \vec{F} dV = \iint_{\partial W} \vec{F} \cdot d\vec{S} = \iint_{\partial W} (\vec{F} \cdot \vec{n}) dS.$$

Note: The Divergence theorem can be proved for more general regions that can be broken up into a finite number of symmetric elementary regions.

Outline of proof:

If
$$\vec{F} = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}$$
; then

$$Div\vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z};$$
 so

$$\iiint_{W} Div \vec{F} dV = \iiint_{W} \frac{\partial P}{\partial x} dV + \iiint_{W} \frac{\partial Q}{\partial y} dV + \iiint_{W} \frac{\partial R}{\partial z} dV.$$

However,

$$\iint_{\partial W} (\vec{F} \cdot \vec{n}) dS = \iint_{\partial W} (P\vec{i} + Q\vec{j} + R\vec{k}) \cdot \vec{n} dS
= \iint_{\partial W} (P\vec{i}) \cdot \vec{n} dS + \iint_{\partial W} (Q\vec{j}) \cdot \vec{n} dS + \iint_{\partial W} (R\vec{k}) \cdot \vec{n} dS.$$

We can show $\iiint_W Div \, \vec{F} \, dV = \iint_{\partial W} (\vec{F} \cdot \vec{n}) \, dS$ by showing

$$\iiint_{W} \frac{\partial P}{\partial x} dV = \iint_{\partial W} (P\vec{\imath}) \cdot \vec{n} dS$$

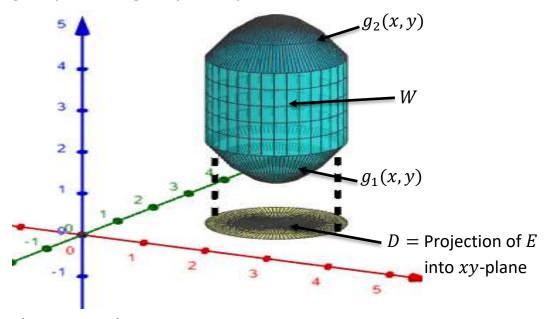
$$\iiint_{W} \frac{\partial Q}{\partial y} dV = \iint_{\partial W} (Q\vec{j}) \cdot \vec{n} dS$$

$$\iiint_{W} \frac{\partial R}{\partial z} dV = \iint_{\partial W} (R\vec{k}) \cdot \vec{n} dS.$$

Let's start with $\iiint_W \frac{\partial R}{\partial z} dV = \iint_{\partial W} (R\vec{k}) \cdot \vec{n} dS$.

Since W is a symmetric elementary region there are functions $z=g_1(x,y)$,

 $z=g_2(x,y)$ and an elementary region D in the xy-plane such that W is given by $g_1(x,y) \le z \le g_2(x,y); \ (x,y) \in D.$



Thus we see that:

$$\iiint_{W} \frac{\partial R}{\partial z} dV = \iint_{D} \int_{z=g_{1}(x,y)}^{z=g_{2}(x,y)} \left(\frac{\partial R}{\partial z}\right) dz dx dy$$

$$= \iint_{D} \left(R\left(x,y,g_{2}(x,y)\right) - R\left(x,y,g_{1}(x,y)\right) dx dy.$$

To show that we get the same thing for $\iint_{\partial W} (R\vec{k}) \cdot \vec{n} dS$, notice that we can think of ∂W as made up of 6 surfaces, S_1, S_2, \ldots, S_6 , where S_1 is the "bottom" boundary of W, S_2 is the "top", and S_3, \ldots, S_6 are the "sides". But for each of the "sides" \vec{n} is perpendicular to \vec{k} , so $\vec{n} \cdot \vec{k} = 0$. Thus we get:

$$\iint_{\partial W} (R\vec{k}) \cdot \vec{n} dS = \iint_{S_1} (R\vec{k}) \cdot \vec{n} dS + \iint_{S_2} (R\vec{k}) \cdot \vec{n} dS.$$

Remembering that the normal for ∂W points outward (so the normal for S_1 points downward), we can calculate:

$$d\overrightarrow{S_1} = \overrightarrow{n}dS_1 = \frac{\partial g_1}{\partial x}\overrightarrow{l} + \frac{\partial g_2}{\partial y}\overrightarrow{J} - \overrightarrow{k}. \text{ Thus we get:}$$

$$\iint_{S_1} (R\overrightarrow{k}) \cdot \overrightarrow{n}dS = -\iint_D R(x, y, g_1(x, y)) dx dy.$$

Similarly, we get:

$$\iint_{S_2} (R\vec{k}) \cdot \vec{n} dS = \iint_D R(x, y, g_2(x, y)) dx dy.$$

$$\iint_{\partial W} (R\vec{k}) \cdot \vec{n} dS = \iint_{D} R(x, y, g_{2}(x, y)) dx dy - \iint_{D} R(x, y, g_{1}(x, y)) dx dy$$

$$= \iiint_{W} \frac{\partial R}{\partial z} dV.$$

$$\iiint_{W} \frac{\partial P}{\partial x} dV = \iint_{\partial W} (P\vec{t}) \cdot \vec{n} dS \text{ and } \iiint_{W} \frac{\partial Q}{\partial y} dV = \iint_{\partial W} (Q\vec{j}) \cdot \vec{n} dS \text{ are done analogously.}$$

Ex. Find the flux of the vector field $\vec{F}(x,y,z) = (ye^z)\vec{i} + (xy)\vec{j} - (xz)\vec{k}$ over the unit sphere $x^2 + y^2 + z^2 = 1$, i.e., find $\iint_S \vec{F} \cdot d\vec{S}$.

Notice that $Div\vec{F}=0+x-x=0$. So by the divergence theorem we have: $\iint_S \vec{F} \cdot d\vec{S} = \iiint_W Div \vec{F} dV = \iiint_W 0 \, dV = 0, \text{ where } W \text{ is the unit ball}$ $x^2+y^2+z^2 \leq 1.$

Ex. Consider the vector field $\vec{F}(x,y,z)=(z)\vec{i}+(y)\vec{j}+(z)\vec{k}$. Let S be the unit sphere $x^2+y^2+z^2=1$. Evaluate $\iint_S (\vec{F}\cdot\vec{n})dS$.

By the divergence theorem: $\iint_S (\vec{F} \cdot \vec{n}) dS = \iiint_W \nabla \cdot \vec{F} dV$, where W is the unit ball $x^2 + y^2 + z^2 \le 1$.

Notice that $\nabla \cdot \vec{F} = Div\vec{F} = 0 + 1 + 1 = 2$. So we have:

$$\iint_{S} (\vec{F} \cdot \vec{n}) dS = \iiint_{W} \nabla \cdot \vec{F} dV = \iiint_{W} 2 \, dV$$
$$= 2 \Big(volume(W) \Big) = 2 \Big(\frac{4}{3} \pi (1)^{3} \Big) = \frac{8\pi}{3} .$$

Ex. Verify the Divergence theorem for $W=\{(x,y,z)\colon x^2+y^2+z^2\leq 1\}$, and $\vec{F}(x,y,z)=(x)\vec{i}+(y)\vec{j}+(z)\vec{k}$.

We need to show that $\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} Div \vec{F} dV$.

Let's start with the RHS. $Div\vec{F} = 1 + 1 + 1 = 3$. So we have:

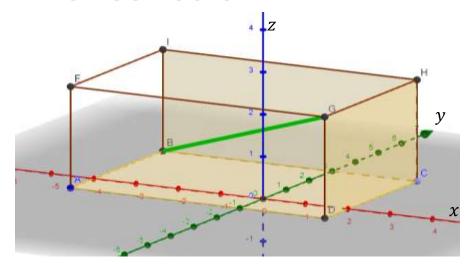
$$\iiint_{W} Div \vec{F} dV = \iiint_{W} 3 dV = 3(vol \ of \ W) = 3(\frac{4}{3}\pi(1)^{3}) = 4\pi.$$

LHS: ∂W is the unit sphere. To calculate $\iint_{\partial W} \vec{F} \cdot d\vec{S}$, we could parametrize the unit sphere and calculate $\vec{T}_{\phi} \times \vec{T}_{\theta}$, but it's much easier in this case to use:

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iint_{\partial W} (\vec{F} \cdot \vec{n}) dS, \text{ where } \vec{n} = \frac{(x)\vec{i} + (y)\vec{j} + (z)\vec{k}}{\sqrt{x^2 + y^2 + z^2}} = (x)\vec{i} + (y)\vec{j} + (z)\vec{k}.$$

$$\iint_{\partial W} (\vec{F} \cdot \vec{n}) dS = \iint_{\partial W} \langle x, y, z \rangle \langle x, y, z \rangle dS = \iint_{\partial W} (x^2 + y^2 + z^2) dS$$
$$= \iint_{\partial W} (1) dS = \text{Surface area of the unit sphere} = 4\pi.$$

Ex. Find the flux of the vector field $\vec{F}(x, y, z) = \langle z - y^2, x, xyz \rangle$ out of the rectangular solid [-4,2]x[-1,3]x[0,3] (this is W).



The flux is given by $\iint_{\partial W} \vec{F} \cdot d\vec{S}$. By the divergence theorem we know:

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} Div \, \vec{F} \, dV.$$

$$Div\vec{F} = 0 + 0 + xy = xy.$$

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} xy \, dV = \int_{x=-4}^{x=2} \int_{y=-1}^{y=3} \int_{z=0}^{z=3} (xy) \, dz \, dy \, dx$$

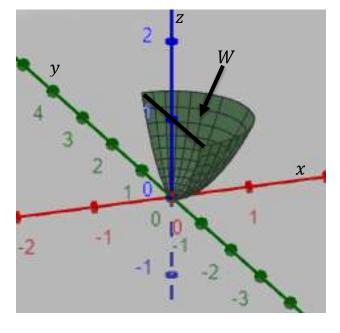
$$= \int_{x=0}^{x=1} \int_{y=-1}^{y=2} xyz \, \Big|_{0}^{3} \, dy \, dx$$

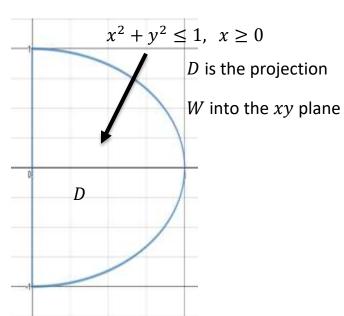
$$= \int_{x=-4}^{x=2} \int_{y=-1}^{y=3} 3xy \, dy \, dx = \int_{x=-4}^{2} \frac{3}{2} xy^{2} \, \Big|_{-1}^{3} \, dx$$

$$= \int_{x=-4}^{x=2} 12x \, dx = -72.$$

Ex. $\vec{F}(x,y,z)=(y)\vec{i}+(z)\vec{j}+(xz)\vec{k}$, Evaluate $\iint_{\partial W} \vec{F}\cdot d\vec{S}$, if W is given by $x^2+y^2\leq z\leq 1, \quad x\geq 0$.

First draw the region W given by $x^2 + y^2 \le z \le 1$, $x \ge 0$.





By the divergence theorem we know:

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} Div \, \vec{F} \, dV.$$

$$Div\vec{F} = 0 + 0 + x = x.$$

 $\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} x \, dV.$ Now we have to integrate over the region W.

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} x \, dV = \iint_{\substack{x^2 + y^2 \le 1 \\ x \ge 0}} \int_{z=x^2 + y^2}^{1} x \, dz \, dA$$

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iint_{\substack{x^2 + y^2 \le 1 \\ x \ge 0}} xz \Big|_{\substack{x^2 + y^2 \le 1 \\ x \ge 0}} 1 dA$$
$$= \iint_{\substack{x^2 + y^2 \le 1 \\ x \ge 0}} x(1 - x^2 - y^2) dA.$$

Now change to polar coordinates: $x = rcos\theta$, $y = rsin\theta$, $dA = rdrd\theta$.

$$= \int_{\theta = -\frac{\pi}{2}}^{\theta = \frac{\pi}{2}} \int_{r=0}^{r=1} (r\cos\theta) (1 - r^2) r dr d\theta$$

$$= \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta \ d\theta \right) \int_{r=0}^{r=1} (r^2 - r^4) dr d\theta$$

$$= \left[\sin\theta \ \Big| \frac{\frac{\pi}{2}}{-\frac{\pi}{2}} \right] \left[\left(\frac{r^3}{3} - \frac{r^5}{5} \right) \ \Big| \frac{1}{0} \right]$$

$$= (2) \left(\frac{1}{3} - \frac{1}{5} \right) = \frac{4}{15}.$$

Ex. Evaluate
$$\iint_{\partial S} (\vec{F} \cdot \vec{n}) dA$$
, where $\vec{F}(x, y, z) = (z)\vec{i} + (x - z)\vec{j} + (z(x^2 + y^2))\vec{k}$

And ∂S is the surface which is the boundary of the portion of the solid cylinder given by $x^2 + y^2 \le 4$, $0 \le z \le 4$.

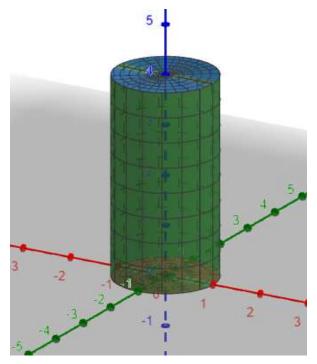
First draw the solid S.

By the divergence theorem:

$$\iint_{\partial S} (\vec{F} \cdot \vec{n}) dA = \iiint_{S} Div \, \vec{F} dS.$$

$$Div\vec{F} = x^2 + y^2$$
, so we have:

$$\iint_{\partial S} (\vec{F} \cdot \vec{n}) dA = \iiint_{S} Div \vec{F} dS$$
$$= \iiint_{S} (x^{2} + y^{2}) dS.$$



We are integrating over the region S which is part of a solid cylinder, thus we change to cylindrical coordinates to do the integral (which is just polar coordinates plus a z coordinate).

$$x = rcos\theta$$
, $y = rsin\theta$, $z = z$; $dS = rdzdrd\theta$.

$$\iiint\limits_{S} (x^2 + y^2) \, dS = \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} \int_{z=0}^{z=4} (r^2)(r) dz dr d\theta$$

$$= \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} \int_{z=0}^{z=4} (r^3) dz dr d\theta$$

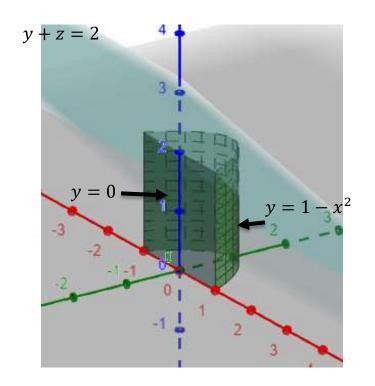
$$= \int_{\theta=0}^{2\pi} \int_{r=0}^{2} r^{3}z \Big|_{z=0}^{z=4} dr d\theta$$

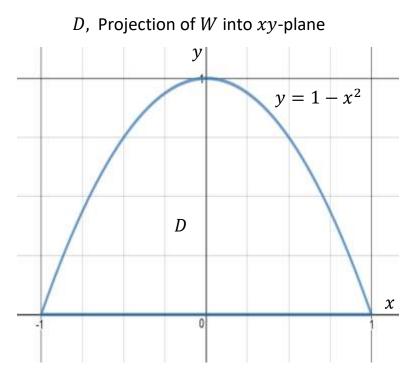
$$= \int_{\theta=0}^{2\pi} \int_{r=0}^{2} 4r^{3} dr d\theta$$
$$= \int_{\theta=0}^{2\pi} r^{4} \Big|_{r=0}^{r=2} d\theta$$
$$= \int_{\theta=0}^{2\pi} 16 d\theta = 32\pi.$$

Ex. Evaluate $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F}(x,y,z) = \langle xz, \sin(z), z^2 + e^{xy^2} \rangle$ and S is the surface that's the boundary of the solid W, where S is made up of the surfaces:

The parabolic cylinder $y = 1 - x^2$, and the planes z = 0, y = 0, and y + z = 2.

First draw the surface *S*.





$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{W} Div \vec{F} dV = \iiint_{W} 3z \, dV$$

$$= \int_{x=-1}^{x=1} \int_{y=0}^{y=1-x^{2}} \int_{z=0}^{z=2-y} 3z \, dz \, dy \, dx$$

$$= \int_{x=-1}^{x=1} \int_{y=0}^{y=1-x^{2}} \frac{3}{2} z^{2} \, \Big|_{z=0}^{z=2-y} \, dy \, dx$$

$$= \int_{x=-1}^{x=1} \int_{y=0}^{y=1-x^{2}} \frac{3}{2} (2-y)^{2} \, dy \, dx$$

$$= \int_{x=-1}^{x=1} -\frac{1}{2} (2-y)^{3} \, \Big|_{y=0}^{y=1-x^{2}} \, dx$$

$$= \int_{x=-1}^{x=1} -\frac{1}{2} \Big[(2-(1-x^{2}))^{3} - (2-0)^{3} \Big] \, dx$$

$$= -\frac{1}{2} \int_{x=-1}^{x=1} ((x^{2}+1)^{3} - 8) \, dx$$

$$= -\frac{1}{2} \int_{x=-1}^{x=1} (x^{6} + 3x^{4} + 3x^{2} - 7) \, dx = \frac{184}{25}.$$

Ex. Find the flux of the vector field

$$\vec{F}(x, y, z) = <\frac{1}{3}x^3 + e^{\sqrt{y}}, \sin(x^2) + z, y^2 + xy > \text{out of the unit sphere},$$

$$x^2 + y^2 + z^2 = 1.$$

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} Div \, \vec{F} \, dV \text{ where } W \text{ is given by } x^2 + y^2 + z^2 \leq 1.$$

$$Div \vec{F} = x^2.$$

So we must evaluate $\iiint_W x^2 dV$ over the unit ball $x^2 + y^2 + z^2 \le 1$.

Method #1: change to spherical coordinates.

$$x = \rho cos\theta sin\phi$$
, $y = \rho sin\theta sin\phi$, $z = \rho cos\phi$,

where
$$0 \le \rho \le 1$$
, $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$.

From 3rd semester Calculus we know that $dV=(
ho^2 sin\phi)d
ho d\phi d\theta$.

$$\iiint_{W} x^{2} dV = \int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=1} (\rho^{2} \cos^{2} \theta \sin^{2} \phi) (\rho^{2} \sin \phi) d\rho d\phi d\theta.$$

$$= \int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=1} (\rho^4 \cos^2 \theta \sin^3 \phi) \, d\rho d\phi d\theta$$

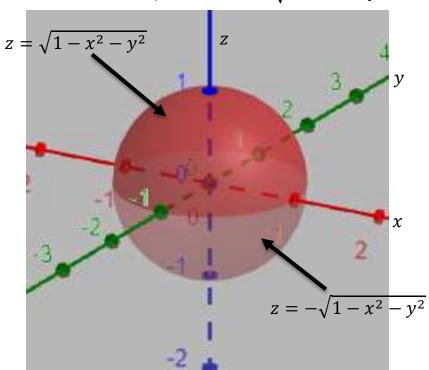
$$= (\int_{\theta=0}^{2\pi} \cos^2 \theta d\theta) (\int_{\phi=0}^{\pi} \sin^3 \phi d\phi) (\int_{\rho=0}^{1} \rho^4 d\rho)$$

$$= \left(\int_{\theta=0}^{2\pi} \left(\frac{1}{2} + \frac{1}{2} \cos 2\theta \right) d\theta \right) \left(\int_{\phi=0}^{\pi} \sin \phi (1 - \cos^2 \phi) d\phi \right) \left(\frac{1}{5} \rho^5 \right|_{0}^{1} \right)$$

$$= (\pi)(-\cos\phi + \frac{1}{3}\cos^3\phi) \Big|_{0}^{\pi}(\frac{1}{5}) = \frac{4\pi}{15}.$$

Method #2: Upper hemisphere is $z = \sqrt{1 - x^2 - y^2}$

Lower hemisphere is $z = -\sqrt{1 - x^2 - y^2}$



$$\iiint_{W} x^{2} dV = \iint_{x^{2} + y^{2} \le 1} \int_{z = -\sqrt{1 - x^{2} - y^{2}}}^{z = \sqrt{1 - x^{2} - y^{2}}} x^{2} dz dy dx$$

$$= \iint_{x^2+y^2 \le 1} x^2 z \, \Big| \, \begin{aligned} z &= \sqrt{1 - x^2 - y^2} \\ z &= -\sqrt{1 - x^2 - y^2} \end{aligned} dy dx$$

$$= \iint_{x^2 + y^2 \le 1} 2x^2 \sqrt{1 - x^2 - y^2} dy dx$$

Now change to polar coordinates:

$$= \int_{\theta=0}^{2\pi} \int_{r=0}^{1} 2r^2 \cos^2 \theta (1 - r^2)^{\frac{1}{2}} r dr d\theta$$

$$= \left(\int_{\theta=0}^{2\pi} \cos^2 \theta d\theta \right) \left(\int_{r=0}^{r=1} 2r^3 (1-r^2)^{\frac{1}{2}} dr \right).$$

For the first integral substitute $\cos^2 \theta = \frac{1}{2} + \frac{1}{2} \cos 2\theta$.

For the second integral let $u=1-r^2$, $\qquad -du=2rdr$, and $r^2=1-u$.

$$= \left(\int_{\theta=0}^{2\pi} \left(\frac{1}{2} + \frac{1}{2} \cos 2\theta \right) d\theta \right) \left(\int_{u=1}^{u=0} -(1-u) u^{\frac{1}{2}} du \right)$$

$$= (\pi) \left(\int_{u=1}^{u=0} \left(-u^{\frac{1}{2}} + u^{\frac{3}{2}} \right) du = (\pi) \left(\frac{2}{3} - \frac{2}{5} \right) = \frac{4\pi}{15}.$$