The Divergence Theorem (Gauss’ Theorem)

Gauss’s divergence theorem says that the flux of a vector field out of a closed
surface equals the integral of the divergence over the volume enclosed by the

surface, ie, ﬂawﬁ -dS = fffw Div FdV; where dW is a closed surface.

We begin by looking at Elementary Regions (eg, W below), ie regions bounded
by, for example, z = u,(x,y) and z = u,(x,y), whose projection, D, into the
xy-plane is bounded by y = g;(x) andy = g,(x), x =aand x = b.

— Z=Uy(x,y)

D = Projection of W
into xy-plane

Ex. A cube is an elementary region (as is a sphere). Let’s take the cube W
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[l F-dS =%, [l F-dS; =X, [f; (F-1)ds,
Since dS; = (i))dS;;  dS; = |T, x T,|dudv

-

—> i — g —> —
In the case of this unitcube, 7; = —k, 1, =k, ny =—1, n, =1, etc.

So, for example, ﬂs3 (F - #i5)dS; =ff5i (F) - (=D)dS; = ffsi —F,dSs.

Theorem (Gauss’ Divergence Theorem) Let W be a symmetric elementary region

in R3. Denote AW as the oriented closed surface that bounds W. Let 13 be a
smooth vector field on W. Then

[if,, DivFav = [ff, V-Fav = [f, F-dS = [[, (F-@)ds.

Note: The Divergence theorem can be proved for more general regions that can
be broken up into a finite number of symmetric elementary regions.

Outline of proof:
if F =P(x,y,2)i+ Q(x,y,2)] + R(x,y,2)k ; then

. 2 9P  9Q . OR
DivF =—+—+4+—; so
6x+6y+az'

[lf,, DivFav = [ff,, 5=av + [[f,, 52dv + [ff, 5 dv.

However,
f (F-)dS = f (PT + Qj + Rk) - 7idS
ow ow

= [f,,,(PD) - 7idS + [f,,,(QD) - 7idS + [f,, (Rk) - iids.



We can show [ff,, Div FdV = ffaw(ﬁ - 1)dS by showing
(IS, 5=dv = [f,, (P - fidS
[l 3edv = [, (@) - fids

IIf, Sav = [f,,,(REk) - 7ids .

Let’s start with fff dV ffaW(Rk) nds .

Since W is a symmetric elementary region there are functions z = g, (x, y),

Z = g,(x,y) and an elementary region D in the xy-plane such that W is given by
91(x,y) <z < g,(x,y); (x,y) €D,

S \ 92(x, )
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91(x,y)

D = Projection of E
into xy-plane

Thus we see that:

1, Zav = [f, 170 dzdxdy

= ffD (R(x,y,9:(x,y)) — R(x,y, 91 (x,y)) dxdy.



To show that we get the same thing for ffaW(RE) - 71dS , notice that we can

think of W as made up of 6 surfaces, 51, S5, ..., Sg, Where S is the “bottom”
boundary of W, S, is the “top”, and S3, ..., S¢ are the “sides”. But for each of the

“sides” 7 is perpendicular to k, so 71 - k = 0. Thus we get:

ja (RE)-ﬁd5=j (Ri?)-ﬁds+j (Rk) - 7idS.
w S1

S2

Remembering that the normal for AW points outward (so the normal for S;
points downward), we can calculate:

- — 0 - 0 - -
dS; =ndS; = %l + aiyzj — k. Thus we get:

j (Rk) - idS = —Jf R(x,y, 91 (x,y))dxdy.
S D
Similarly, we get:

jsz (Rk) - idS = ij R(x,y, 92 (x,y))dxdy.

[, (RE) - 7idS = [[_ R(x,y,9.Ce,y))dxdy — [[, R(x,y,9:(x,y))dxdy

= [ 5 4v.

fffwg—de = ffaW(Pi) ‘1dS and fffwg—ng = ffaW(QD-ﬁdS are done

analogously.



Ex. Find the flux of the vector field F (x, y,z) = (ye®)T + (xy)j — (xz)l_c) over the
unit sphere x* +y? +z% = 1, i.e,, find [ F-dS.

Notice that DivF = 0+ x —x = 0. So by the divergence theorem we have:
ﬂs F-dS = fffw DivFdV = fffw 0dV = 0, where W is the unit ball

x2+y?+2z%2 <1,

Ex. Consider the vector field F (x, v,z) = (2)T+ (y)J + (2)k. Let S be the unit
sphere x? + y2 + z2 = 1. Evaluate [[; (F - #)dS.

By the divergence theorem: [ (F-)dS = i, v -FdV, where W is the
unit ball x2 + y2 + z%2 < 1.

Notice that V- F = DivE = 0 4+ 14+ 1=2. Sowe have:

US (ﬁ'ﬁ)ds=gjv'ﬁdV=jMﬂ2dV

= 2(volume(W)) = 2(Gm(1)*) =



Ex. Verify the Divergence theorem for W = {(x,y,z): x* + y? + z? < 1}, and

F(x,y,z) = )T+ ®)j + (2)k.

We need to show that ffawﬁ -dS = fffw Div FdV.

Let’s start with the RHS. DivF =1 +1+4+1=3. Sowe have:

Uf DivFdV = jﬂ 3dV =3(wolof W) = 3(%71(1)3) — 411,

LHS: dW is the unit sphere. To calculate ﬂawﬁ - dS, we could parametrize the

unit sphere and calculate Td) X 79, but it’s much easier in this case to use:
@i+Wj+@k

= (i + )] + k.
/x2+yz+z2

j (ﬁ-ﬁ)dSzjf <x,y,z>-<x,y,z>d5=j (x? + y? + z%)dS
ow ow ow

ffawl3 +dS = ffaw(ﬁ *n)dS, where i =

= ffaw(l)dS =Surface area of the unit sphere=4r.

Ex. Find the flux of the vector field ﬁ(x, y,z) =< z — y?,x,xyz > out of the
rectangular solid [—4,2]x[—1,3]x[0,3] (thisis W).




The flux is given by ffawﬁ . dS. By the divergence theorem we know:

ﬂ ﬁ-d§=ﬂfDivﬁdV.
ow W

Divﬁ=0+0+xy=xy.

jLWﬁ-d§=lw[fxdeJ f f_ (xy) dzdydx

_x=1 py=2 3
= [ fy=_1xyz | Odydx
o 4fy -3 3xydydx—f xy

= f;:i 12xdx = —72.

Ex. F(x,y,2) = )T+ @)] + (x2)k, Evaluate ffawﬁ . dS, if W is given by

x2+y?2<z<1 x=0.

v
o

First draw the region W givenbyx?2 + y2 <z <1, x

x*+y2<1, x=0

D is the projection

W into the xy plane




By the divergence theorem we know:

ff ﬁ-d§=ﬂfmvﬁdv.
ow W

Divﬁ=0+0+x=x.

ffaw F-dS = fffW xdV. Now we have to integrate over the region W.

1
ff ﬁ-d§=ﬂfde=U2 i f xdzdA
ow o x ;Z()Sl z=x2+y2
o e 1
fLWF-dS—fL2+y251XZ|x2+y2 dA

x=0

= ffx2+y231 x(1— x? —y?)dA.

x=0

Now change to polar coordinates: x = rcos, y =rsinf, dA = rdrd®é.

= f nf '(rcos®)(1 — r2)rdrdd

= (f2 cosf dH)f '(r2 — r*)drde

_ [sin@ |_§ ][(%——) 4

-0 -=1



Ex. Evaluate ffas(ﬁ -7)dA, where F(x,y,2) = (2)T + (x — 2)] + (z(x? + y2)k

And 0S5 is the surface which is the boundary of the portion of the solid cylinder
givenbyx? +y2 <4, 0<z<4.

First draw the solid S.

By the divergence theorem:

[f,s(F - )dA = [f[, Div Fds.

DivF = x% + y2, so we have:

[f,s(F - )dA = [ff, DivFdS

= [l &* +y*)ds.

We are integrating over the region S which is part of a solid cylinder, thus we

, 14
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change to cylindrical coordinates to do the integral (which is just polar
coordinates plus a z coordinate).

x =rcosf, y=rsinf, z=z; dS = rdzdrd®o.

ﬂ (x? +y?)dsS = f: Ozn fr=o fz_ 4(1‘2)(r)dzdrd6?

9 an f o "(r®)dzdrdo

_2m 2 3 lz=4
= Jo_o ) _ 7’2 |Z=0drd9

7
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_ 271 2 3
= fg_o J_,4r3drde

27 r=2
e f6=0T4 |T' _ OdH

= [T 16d6 = 32m.

Ex. Evaluate ﬂs F-dS where ﬁ(x, y,z) =< xz,sin(z) , z% + e*¥* > and S'is
the surface that’s the boundary of the solid W, where S is made up of the

surfaces:

The parabolic cylinder y =1 — x2,and the planes z = 0, y=0 andy +z = 2.

First draw the surface S.

D, Projection of W into xy-plane
y

4 b

y=1-—x2




[f, F-dS=[]f, DivFdv = [ff, 3zdV

= =1— 2 - —
= f;C:_ll 5;01 i fZZ=02 ¥ 3zdzdydx

=1 =1- 23 = 2—
=l fn 37 g z=0 Y dydx

= —1—x2
:fx 1 ry=1-x 3(2—y)2dydx

x=—17y=0 E

_x=l _1._ a3 |y=1-x7
o Jx=—1 2(2 y) | y=0 dx

= e -a-) - @2-0)]dx

x=-—1 2

1 rx=1
= =2 [, ((x* + 1)° = 8)dx

_ _1mx=1 .56 4 2 _ 184
Lo (8 + 3x* + 3x% = Tdx = .
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Ex. Find the flux of the vector field
F(x,y,2) =< §x3 + eVY,sin(x?) + z,y? + xy > out of the unit sphere,

x2+y*+z2=1.

F-dS = DivF V where W is given by x* + y* + z* < 1.
oW d w d 2 2 2
DivF = x2.

So we must evaluate fffw x% dV over the unitball x* + y% + z2 < 1.

Method #1: change to spherical coordinates.
x = pcosBOsing, y = psinfsing, z = pcoso,
where 0<p<1,0<60<2mr 0<¢p<m.

From 3™ semester Calculus we know that dV = (p?sing)dpd¢pdo.
fff. x*dV = fe an P=1(p2 cos? @ sin? ¢)(p?sing) dpdddo
w =0 Jp=0 ‘

o= znf (p cos? 0 sin3 ¢) dpdpdo

= (J,2, cos? 6d6) ([,,_, sin® pdp)([,_ p*dp)
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— (fezzo (% + %cosze) d9)(fg=05in¢(1 — cos? ¢)d¢)(§p5 |(1) )

= (m)(—cos¢ + §c053 ®) |g(§) = i—’;.

Method #2: Upper hemisphereis z = \/1 — x?% — y?

Lower hemisphere is z = —\/1 — x? — y?

_[Toxi=y2
I, x*dv = ffx2+y251 fZZ=_\/:T_yyzx2dzdydx
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- ffx2+y2s1 x*z

= ffx2+y251 2x% /1 — x% — y2dydx

Now change to polar coordinates:

2T 1 2 2 2 1
= Jo=0 fr:o 2r<cos“ 0(1 — r<)z2rdrd0

= 1
= (f;:o cos? 9d9)(f:=_01 2r3(1 — r?)zdr).

For the first integral substitute cos? 8 = % + %COSZQ.

For the second integral letu =1 —1r2, —du=2rdr,andr?=1—u.

0

= (Jyr (5 +3c0s26) d) (fo) —(1 - wWuzdu)

= @~ +uz)du = () (2-2) =22,



