Stokes’ Theorem
Recall that the vector form of Green’s theorem says:

Vector Form of Green’s Theorem: Let D c R? be a region to which Green’s
theorem applies. Let dD be its positively oriented (ie counterclockwise)

boundary, and let F = P(x, y)T+ Q(x,y)J be a C! vector field on D then

faDﬁ-d§ = ffD (curlﬁ)-l_c)dA = ffD (Vxﬁ)-l_c)dA_

Notice that since Green’s theorem applies to regions in the xy-plane (ie a surface

that lies in the xy-plane), the k that appears on the right hand side of the formula
is actually the unit normal, 71, to the surface D. Also, since we are dealing with a
surface in the xy-plane, the “dA” is the same as “dS”. Thus we could write the
formula as:

[y F-d3 = [[. (curlF)-7dS = [f, (VxF)-7ds.

Now if the surface is parametrized we can write:

7t = é”i;”l ,  dS=|T, x T,|dudv, dS = (T, x T,,)dudv
so 7dS = dS.

So we could write Green’s theorem as:

-

fooF-ds = [f, (curlF)-dS = [[, (VxF)-ds.

This is exactly what the conclusion to Stokes’ theorem is. The difference is that
the surface, S, in Stokes’ theorem is a surface in R3, not in R?.



Stokes’ Theorem (for graphs, z = f(x,y)): Let S be the oriented surface defined
by a C2 function z = f(x,y), where (x,y) € D, a region to which Green’s

theorem applies, and let F be a C! vector field on S. Then if S denotes the
oriented boundary curve of S, we have:

[,oF-ds = [[; (curlF)-dS = [[; (VxF)-dS.
Note: As mentioned above, since nds = d§ we could rewrite this as:
JogF-ds = [[; (curl F)-7dS = [[. (VX F)-1dS or

fo F - Tds = [J, (curl F)-#idS = [f, (Vx F)-7dS

i.e., The integral of the normal component of the curl(ﬁ) over the surface S is

equal to the integral of the tangential component of F around 5.

The idea of the proof is to reduce Stokes’ theorem to an application of Green’s
theorem. This can be done by using the fact thatif f:D € R? -» S € R3 then
f(@D) = 8S. So if the boundary of D is given by the curve ¢(t) =< x(t),y(t) >,

then 0S5 is given by the curve C(t) =< x(t),y(t),f(x(t),y(t)) >,
.




Thus we can write:

fasﬁ -ds = faS(F1dx + F,dy + F3dz); where

— — v =92 gy = (2ax, 0zdy
dx =—dt, dy=--dt, dz=_dt= (ax — 1 3y dt)dt

Plugging dx, dy, dz into the integral and rearranging terms we get

Fodeg= (P(F ¥+ Y+ R %
Jos FdS = [ (F;+ F,—~ + F3=)dt

0 0
= [op(F1 + F33)dx + (F; + F3 3-)dy

If we now apply Green’s theorem to this integral we get a messy integral over D.

If we now calculate [f (V X F) - dS using the fact that if z = f(x, y) then

[, G-dS=[f (—Gify — Gaof, + G3) dydx

and using expression G =Vx ﬁ, the RHS of the integral in the line above is
actually equal to the messy integral we just got from Green’s theorem.

Ex. Let F = (e* +2)I + (cosy)j + xk. Show that the integral of F around an
oriented simple closed curve c that is the boundary of a C? surface S (where S is
of the form z = f(x,y)) is 0.

-

By Stokes’ theorem we know: fasﬁ ds = ffs (VxF)-dS.

VXF

e*+z cosy «x

So we have fasﬁ-d§= I 0 - dS=0.



Ex. Verify Stokes’ theorem for F = (z2)7 + (x)] + (y?)k and the surface

S={(x,y,2): x> +y2+ 22 =9; z> 0} (oriented as the graph

z=(9—x*— yz)%) with dS = {(x,y): x? + y? = 9}.

We need to evaluate each side of: fasﬁ -ds = ffS (VX F)-ds.

LHS: 9§ is just a circle of radius 3 in the xy-plane.
c(t) =< 3cost,3sint,0>; 0<t<2m

¢'(t) =< —3sint, 3cost, 0 >;

2T
j F-ds = j < 0%,3cost, 9sin*t >-< —3sint, 3cost,0 > dt
as 0

cos2t
2

2w 1
G+

= [ (9cos? t)dt =9 || )dt=9r.

0



RHS: We have to calculate V x F.

I ]k

vxF=|L 2 2l=02yi+@+k
dx 09y 0z '
zZ2 x  y?

1
Since the surface can be given as z = f(x,y), ie z = (9 — x? — y?)z, we can
either remember the formula:

I G-dS = I, (=(G)zy — (G3)zy + G3) dxdy where G=VxF or
rederive it by letting:

— 1 — —

?(x,y) =<x,¥,z = (9 —x* — y*)2z > and calculating T) X T,

In this example we will calculate T, X T,,.

- 1
D(x,y) =<x,9,(9 —x%?—y?)z >

T, =< 1,0, ~—>; T,=<01—>—>
(9-x2-y?)2 (9-x%-y?)2
7 k
— — 1 O X X - y - -
Tx X y = (9_x2_y2)% = 1 l + 1] + k
0 1 2 (9-x%2-y?)z2  (9-x*-y?)2
(9-x2-y?)2




(VxF)- (T, xT,)

X

= ()T + (22)] + k)- (

1 1
(9_x2_y2)7 (9_x2_y2)7
_ 2xy _+ 2yz 41
(9—x2—y2)2  (9—x2—y2)2
Y
(9_x2_y2)2
ﬂ (VXF) ds = ff T+ 2y +1 |dxdy.
(x2+y2<9) \ (9 — 2)2

Now change to polar coordinates:

_ rb=2m fr 3 2r%cosOsinb

o= Jro =t rsind + 1)(r)drdo

_ 0=2m1 J-r 3 2r3cosOsinb

=0 Jr—o =7 + r2sinf + r)drdo

2T 2T 3
= 2] cosOsinfdo dr + 2] sin@dé?j redr

0

[ 7=

2T
.[ .[ rdrd®.

o N , 2 .
If we let u = sin@ in the first integral we will see that fO " cosOsinfde = 0.

And since fozn sinfdf = 0 in the middel integral we also get O:

= 0+ 04 areaof disk orradius 3 =9



Ex. Verify Stokes’ theorem for F = (—y2)i + )J + (zz)l_c) and S is the
intersection of the solid cylinder x? + y? < 1 and the planex +z = 2 (dS is
oriented counterclockwise).

x+z=2

We need to show: fasﬁ-d§=ﬂ5 (VX F)-dS.

RHS: First calculate V X F.

I ]k
p_|2 o 2|_ 5
VXF = % 3y (1 + 2y)k.
_yz x 72

Since the surface can be givenas z = f(x,y),ie z =2 — x, we can either
remember the formula:

I G-dS = I, (=(G)zy — (G;)zy + G3) dxdy where G=VxFor
rederive it by letting

@ (x, y) =< x,y,2 — x > and calculating Tx X Ty.



In this example we will use ffs G-dS = ffD (—(Gzx — (G2)zy + G3) dxdy.

SinceG =V X F = 1+ 2y)7€, G; and Gy are0and G3 = 1 + 2y.

[y OxF)-dS =[5, ».,(1+2y)dxdy.

Since we are integrating over a disk, change to polar coordinates:

= fozn fol(l + 2rsin@)rdrdf = fozn fol(r + 2r?%sin@)drdo

_e2m1l 5, 2 3 .1
=J, Sri+3r Sln9|0d0—f0

2”(% + 25in0)d9 =T.

LHS: To calculate fas F - d3 we need to parametrize 9.

The boundary curve is the intersection of x?2 + y? = 1andz = 2 — x.
X = cost, y = sint, z=2—x=2—cost, 0t < 2m.
c(t) =< cost,sint,2 —cost >; 0<t<2m

c'(t) =< —sint, cost, sint >;

= - 2 . . .
fasF - ds = fo " < —sin?t, cost, (2 — cost)? >-< —sint, cost, sint > dt
21, . .
= [, "[sin3t + cos? t + sint(2 — cost)?]dt
_ 21T . 3 2T 2 2T . 2
= [, sin®tdt + [ cos?tdt + [, sint(2 — cost)?dt

= foznsint(l — cos? t)dt + fozn G + %cosZt) dt + fOZESiTLt(Z — cost)?dt.



To evaluate the first integral let u = cost, du = —sintdt. To evaluate the 3™
integral let u = 2 — cost, du = sintdt.

_ 1 3.2, A1 o 2T 1., 32T
= —(—cost + - cos” t) 0 + (Gt + sin2t| 0 +3(2 cost) |0

=Tr.

Ex. Use Stokes’ theorem to calculate ] curl(F) - dS where

F(x,y,2) = (x2)T + (y2)] + (xy)l_c> and S is the part of the sphere

x%2 + y? + z? = 4 that lies inside x? + y2 = 1 and above the xy-plane.

-

JyoF-ds = [[; (curlF)-dS

dS is the intersection of x? + y2 + z2 = 4 and x% + y? = 1. Substituting the
second equation in the first we get:

1422=4, or z=+3, butsincez >0, z=+/3.
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Thus the curve of intersection can be given by:
x =cost, y=sint, z= V3

¢(t) =< cost,sint,\/3 > 0<t < ?2m.
¢'(t) =< —sint, cost, 0 >;
ﬁ(E(t)) =< \/3cost,\/3sint, costsint >.
. 2T
f F-ds = j < \/§Cost, \/§sint, costsint > ‘< — sint, cost,0 > dt
as 0

= [7"0dt =0

so [, (curlF)-dS =0.

Notice that any smooth surface which has the same boundary, c, will give the

same integral value of , ie if 3S; = 35S, where both surfaces are C* and Fis cl,

[[s, WxF)-dS = [, F-d§= [,  F-d§=[[ (VxF)-dS.

Stokes’ Theorem for Parametrized Surfaces

Theorem: Let S be an oriented surface defined by a 1-1 parametrization

@:D c R? - R3, where @(D) = S, and D is a region to which Green’s theorem

applies. Let dS denote the oriented boundary of S and let F be a C! vector field
on S. Then:

J,oF-ds = [f, (VxF)-ds.

If S has no boundary (e.g. a sphere, ellipsoid, etc.) then the integral on the RHS is 0.
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Ex. Evaluate ffs (V X ﬁ) . dS where F(x, y,z) =<e*,yz?, sinz > and S is the

unit sphere.
[, Frds=[f, (VxF)-dS butds =0so

[, (VxF)-dS=0.

Ex. Verify Stokes’ theorem for the portion of the cone given by
5(7’, 0) =<rcosh, rsinf, r>; 0<r<1, 0<6 <2m andthe vector field

ﬁ(x,y,z) =<Yy,Z,X>.

We must show: fasﬁ'd‘e:ﬂs (VX F)-dS.

RHS: First calculate V X ﬁ'

Tk

VxF=|2 2 9|=-7-7—-k
dx Jdy 0z
y z X

5(1’, 0) =< rcosf,rsind,r>; 0<r<1 0<6<2m

fr =< cos0,sinf,1 > Tg =< —rsinf,rcosf,0 >

- -

l

— — J

k .
T, XTg =\ cos® sin® 1|= —rcosdT—rsinbj+rk.
—rsin@ rcosf@ 0
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[l; VxFy-dS = [f, (Vx F)- (T, x Ty)drds
= fozn fol <-1,-1,—-1>< —rcosf,—rsinf,r > drdf
2 1 .
= [, J, (rcosf + rsind —r) drd6
_ an 2 1 2 . _l ) 1
_fo T cosH+2r sin6 T |Od9

= 2n1c056?+lsim9—1 dé = —m.
0 2 2

LHS: c(t) =< cost,sint,1>; 0<t <2m.

¢'(t) =< —sint, cost,0 > ; ﬁ(E(t)) =< sint, 1, cost >

= - 2 . .
fasF - ds = fon < sint, 1, cost >< —sint, cost,0 > dt

2T

= fozn(— sin® t + cost)dt = [ (- % + %COSZt + cost)dt = —.

Notice that if we were trying to find ffsl (V x ﬁ) - dS where S; were the surface

givenby x? + y2 <1, z =1, i.e., the disk of radius 1 in the plane z = 1, and F
were the vector field in the previous example, we would already know the
answer. This is because dS = 05, (they are both the circle of radius 1 in the plane
z = 1). Thus by Stokes’ theorem

I (Vxﬁ)'d§=fasﬁ'd‘?:faslﬁ'dgzffsl(VXﬁ)'d§=—n.



