
                                                      Stokes’ Theorem 

Recall that the vector form of Green’s theorem says: 

Vector Form of Green’s Theorem:  Let  𝐷 ⊂ ℝ2 be a region to which Green’s 

theorem applies.  Let 𝜕𝐷 be its positively oriented (ie counterclockwise) 

boundary, and let 𝐹⃗ = 𝑃(𝑥, 𝑦)𝑖 + 𝑄(𝑥, 𝑦)𝑗 be a 𝐶1 vector field on D then 

         ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝐷

= ∬ (𝑐𝑢𝑟𝑙
𝐷

𝐹⃗) ∙ 𝑘⃗⃗𝑑𝐴 = ∬ (∇ ×
𝐷

𝐹⃗) ∙ 𝑘⃗⃗𝑑𝐴.  

 

Notice that since Green’s theorem applies to regions in the 𝑥𝑦-plane (ie a surface 

that lies in the 𝑥𝑦-plane), the 𝑘⃗⃗ that appears on the right hand side of the formula 

is actually the unit normal, 𝑛⃗⃗, to the surface 𝐷.  Also, since we are dealing with a 

surface in the 𝑥𝑦-plane, the “𝑑𝐴” is the same as “𝑑𝑆”.  Thus we could write the 

formula as: 

         ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (𝑐𝑢𝑟𝑙
𝑆

𝐹⃗) ∙ 𝑛⃗⃗𝑑𝑆 = ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑛⃗⃗𝑑𝑆. 

 

Now if the surface is parametrized we can write: 

𝑛⃗⃗ =
𝑇⃗⃗𝑢×𝑇⃗⃗𝑣

|𝑇⃗⃗𝑢×𝑇⃗⃗𝑣|
  ,      𝑑𝑆=|𝑇⃗⃗𝑢 × 𝑇⃗⃗𝑣|𝑑𝑢𝑑𝑣,     𝑑𝑆 = (𝑇⃗⃗𝑢 × 𝑇⃗⃗𝑣)𝑑𝑢𝑑𝑣 

So   𝑛⃗⃗𝑑𝑆 = 𝑑𝑆. 

So we could write Green’s theorem as: 

∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (𝑐𝑢𝑟𝑙
𝑆

𝐹⃗) ∙ 𝑑𝑆 = ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆.⃗⃗ ⃗  

 

     This is exactly what the conclusion to Stokes’ theorem is.  The difference is that 

the surface, 𝑆, in Stokes’ theorem is a surface in ℝ3, not in ℝ2. 
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Stokes’ Theorem (for graphs, 𝑧 = 𝑓(𝑥, 𝑦)):  Let 𝑆 be the oriented surface defined 

by a 𝐶2 function 𝑧 = 𝑓(𝑥, 𝑦),  where (𝑥, 𝑦) ∈ 𝐷, a region to which Green’s 

theorem applies, and let 𝐹⃗ be a 𝐶1 vector field on 𝑆.  Then if 𝜕𝑆 denotes the 

oriented boundary curve of 𝑆, we have: 

              ∫ 𝑭⃗⃗⃗ ∙ 𝒅𝒔⃗⃗
𝝏𝑺

= ∬ (𝒄𝒖𝒓𝒍
𝑺

𝑭⃗⃗⃗) ∙ 𝒅𝑺⃗⃗⃗ = ∬ (𝛁 ×
𝑺

𝑭⃗⃗⃗) ∙ 𝒅𝑺.⃗⃗⃗ ⃗ 

Note:  As mentioned above, since 𝑛⃗⃗𝑑𝑆 = 𝑑𝑆 we could rewrite this as: 

       ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (𝑐𝑢𝑟𝑙
𝑆

𝐹⃗) ∙ 𝑛⃗⃗𝑑𝑆 = ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑛⃗⃗𝑑𝑆   or 

       ∫ 𝐹⃗ ∙ 𝑇⃗⃗𝑑𝑠
𝜕𝑆

= ∬ (𝑐𝑢𝑟𝑙
𝑆

𝐹⃗) ∙ 𝑛⃗⃗𝑑𝑆 = ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑛⃗⃗𝑑𝑆    

i.e., The integral of the normal component of the curl(𝐹⃗) over the surface 𝑆 is 

equal to the integral of the tangential component of 𝐹⃗ around 𝜕𝑆. 

 

     The idea of the proof is to reduce Stokes’ theorem to an application of Green’s 

theorem. This can be done by using the fact that if 𝑓: 𝐷 ⊆ ℝ2 → 𝑆 ⊆ ℝ3 then 

𝑓(𝜕𝐷) = 𝜕𝑆.  So if the boundary of 𝐷 is given by the curve 𝑐(𝑡) =< 𝑥(𝑡), 𝑦(𝑡) >, 

then 𝜕𝑆 is given by the curve 𝐶(𝑡) =< 𝑥(𝑡), 𝑦(𝑡), 𝑓(𝑥(𝑡), 𝑦(𝑡)) >. 

 

 

 

 

 

 

 

𝐷 

𝜕𝐷 = 𝑐(𝑡) 

𝑛⃗⃗ 

𝑆 

𝐶 = 𝜕𝑆 
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Thus we can write: 

     ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∫ (𝐹1𝑑𝑥 + 𝐹2𝑑𝑦 + 𝐹3𝑑𝑧)
𝜕𝑆

;    where 

         𝑑𝑥 =
𝑑𝑥

𝑑𝑡
𝑑𝑡,     𝑑𝑦 =

𝑑𝑦

𝑑𝑡
𝑑𝑡,     𝑑𝑧 =

𝑑𝑧

𝑑𝑡
𝑑𝑡 = (

𝜕𝑧

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑧

𝜕𝑦

𝑑𝑦

𝑑𝑡
)𝑑𝑡 

    Plugging 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 into the integral and rearranging terms we get 

    ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∫ (𝐹1
𝑏

𝑎

𝑑𝑥

𝑑𝑡
+ 𝐹2

𝑑𝑦

𝑑𝑡
+ 𝐹3

𝑑𝑧

𝑑𝑡
)𝑑𝑡 

                      = ∫ (𝐹1 + 𝐹3𝜕𝐷

𝜕𝑧

𝜕𝑥
)𝑑𝑥 + (𝐹2 + 𝐹3

𝜕𝑧

𝜕𝑦
)𝑑𝑦 

If we now apply Green’s theorem to this integral we get a messy integral over 𝐷.  

 

If we now calculate ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆 using the fact that if 𝑧 = 𝑓(𝑥, 𝑦) then 

                        ∬ 𝐺⃗ ∙ 𝑑𝑆 = ∬ (−𝐺1𝑓𝑥 − 𝐺2𝑓𝑦 + 𝐺3)
𝐷𝑆

𝑑𝑦𝑑𝑥 

and using expression  𝐺⃗ = ∇ × 𝐹⃗, the RHS of the integral in the line above is 

actually equal to the messy integral we just got from Green’s theorem. 

 

Ex.  Let 𝐹⃗ = (𝑒𝑥 + 𝑧)𝑖 + (𝑐𝑜𝑠𝑦)𝑗 + 𝑥𝑘⃗⃗.  Show that the integral of 𝐹⃗ around an 

oriented simple closed curve 𝑐 that is the boundary of a 𝐶2 surface 𝑆 (where 𝑆 is 

of the form 𝑧 = 𝑓(𝑥, 𝑦)) is 0. 

By Stokes’ theorem we know:  ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆.⃗⃗ ⃗ 

∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑒𝑥 + 𝑧 𝑐𝑜𝑠𝑦 𝑥

| = 0⃗⃗  

So we have     ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ 0⃗⃗
𝑆

∙ 𝑑𝑆=0. 
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Ex.  Verify Stokes’ theorem for 𝐹⃗ = (𝑧2)𝑖 + (𝑥)𝑗 + (𝑦2)𝑘⃗⃗  and the surface 

     𝑆 = {(𝑥, 𝑦, 𝑧): 𝑥2 + 𝑦2 + 𝑧2 = 9;   𝑧 ≥ 0}  (oriented as the graph 

     𝑧 = (9 − 𝑥2 − 𝑦2)
1

2)  with 𝜕𝑆 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 = 9}. 

 

 

 

 

 

 

 

 

 

 

We need to evaluate each side of:  ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆.⃗⃗ ⃗ 

LHS:   𝜕𝑆 is just a circle of radius 3 in the 𝑥𝑦-plane. 

       𝑐(𝑡) =< 3𝑐𝑜𝑠𝑡, 3𝑠𝑖𝑛𝑡, 0 >;      0 ≤ 𝑡 ≤ 2𝜋 

      𝑐′(𝑡) =< −3𝑠𝑖𝑛𝑡, 3𝑐𝑜𝑠𝑡, 0 >;      

∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∫ < 02, 3𝑐𝑜𝑠𝑡, 9𝑠𝑖𝑛2𝑡 >∙< −3𝑠𝑖𝑛𝑡, 3𝑐𝑜𝑠𝑡, 0 > 𝑑𝑡
2𝜋

0

 

                                = ∫ (9𝑐𝑜𝑠22𝜋

0
𝑡)𝑑𝑡 = 9 ∫ (

1

2

2𝜋

0
+

𝑐𝑜𝑠2𝑡

2
)𝑑𝑡=9𝜋. 

 

𝑧 = (9 − 𝑥2 − 𝑦2)
1

2)   

𝜕𝑆:  𝑥2 + 𝑦2 = 9 

𝑛⃗⃗ 

𝑥 

𝑦 

𝑧 
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RHS:  We have to calculate ∇ × 𝐹⃗. 

∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑧2 𝑥 𝑦2

| = (2𝑦)𝑖 + (2𝑧)𝑗 + 𝑘⃗⃗. 

Since the surface can be given as 𝑧 = 𝑓(𝑥, 𝑦), ie   𝑧 = (9 − 𝑥2 − 𝑦2)
1

2,  we can 

either remember the formula: 

∬ 𝐺⃗ ∙ 𝑑𝑆
𝑆

= ∬ (−(𝐺1)𝑧𝑥 − (𝐺2)𝑧𝑦 + 𝐺3)
𝐷

𝑑𝑥𝑑𝑦  where 𝐺⃗ = ∇ × 𝐹⃗  or 

rederive it by letting: 

𝛷⃗⃗⃗(𝑥, 𝑦) =< 𝑥, 𝑦, 𝑧 = (9 − 𝑥2 − 𝑦2)
1

2 > and calculating 𝑇⃗⃗𝑥 × 𝑇⃗⃗𝑦. 

In this example we will calculate 𝑇⃗⃗𝑥 × 𝑇⃗⃗𝑦. 

 

𝛷⃗⃗⃗(𝑥, 𝑦) =< 𝑥, 𝑦, (9 − 𝑥2 − 𝑦2)
1

2 >   

 

𝑇⃗⃗𝑥 =< 1, 0,
−𝑥

(9−𝑥2−𝑦2)
1
2

> ;        𝑇⃗⃗𝑦 = < 0, 1,
−𝑦

(9−𝑥2−𝑦2)
1
2

>  

 

𝑇⃗⃗𝑥 × 𝑇⃗⃗𝑦 =
|
|

𝑖 𝑗 𝑘⃗⃗

1 0
−𝑥

(9−𝑥2−𝑦2)
1
2

0 1
−𝑦

(9−𝑥2−𝑦2)
1
2

|
|

= 
𝑥

(9−𝑥2−𝑦2)
1
2

𝑖⃗ +
𝑦

(9−𝑥2−𝑦2)
1
2

𝑗⃗ + 𝑘⃗     
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(∇ × 𝐹⃗) ∙ (𝑇⃗⃗𝑥 × 𝑇⃗⃗𝑦)  

                         = ((2𝑦)𝑖 + (2𝑧)𝑗 + 𝑘⃗⃗)∙ (
𝑥

(9−𝑥2−𝑦2)

1
2

𝑖 +
𝑦

(9−𝑥2−𝑦2)

1
2

𝑗 + 𝑘⃗⃗) 

                           =
2𝑥𝑦

(9−𝑥2−𝑦2)
1
2

+ 2𝑦𝑧

(9−𝑥2−𝑦2)
1
2

+ 1      

                            =
2𝑥𝑦

(9−𝑥2−𝑦2)
1
2

+ 2𝑦 + 1.     

 

∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆 = ∬ (
2𝑥𝑦

(9 − 𝑥2 − 𝑦2)
1
2

+ 2𝑦 + 1) 𝑑𝑥𝑑𝑦
(𝑥2+𝑦2≤9)

. 

 

Now change to polar coordinates: 

= ∫ ∫ (
2𝑟2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

√9−𝑟2

𝑟=3

𝑟=0

𝜃=2𝜋

𝜃=0
+ 𝑟𝑠𝑖𝑛𝜃 + 1)(𝑟)𝑑𝑟𝑑𝜃  

= ∫ ∫ (
2𝑟3𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

√9−𝑟2

𝑟=3

𝑟=0

𝜃=2𝜋

𝜃=0
+ 𝑟2𝑠𝑖𝑛𝜃 + 𝑟)𝑑𝑟𝑑𝜃  

= 2 ∫ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃 ∫
𝑟3

√9 − 𝑟2

3

0

2𝜋

0

𝑑𝑟 + 2 ∫ 𝑠𝑖𝑛𝜃𝑑𝜃 ∫ 𝑟2
3

0

2𝜋

0

𝑑𝑟

+ ∫ ∫ 𝑟𝑑𝑟𝑑𝜃
3

0

2𝜋

0

. 

If we let 𝑢 = 𝑠𝑖𝑛𝜃 in the first integral we will see that ∫ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃 = 0
2𝜋

0
. 

And since ∫ 𝑠𝑖𝑛𝜃𝑑𝜃 = 0
2𝜋

0
 in the middel integral we also get 0: 

  =   0 +    0 +    𝑎𝑟𝑒𝑎 𝑜𝑓 𝑑𝑖𝑠𝑘 𝑜𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 3 = 9𝜋 
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Ex.   Verify Stokes’ theorem for 𝐹⃗ = (−𝑦2)𝑖 + (𝑥)𝑗 + (𝑧2)𝑘⃗⃗  and 𝑆 is the 

intersection of the solid cylinder 𝑥2 + 𝑦2 ≤ 1 and the plane 𝑥 + 𝑧 = 2 (𝜕𝑆 is 

oriented counterclockwise). 

 

 

 

 

 

 

 

 

We need to show:  ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆.⃗⃗ ⃗ 

 

RHS:   First calculate ∇ × 𝐹⃗. 

∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

−𝑦2 𝑥 𝑧2

| = (1 + 2𝑦)𝑘⃗⃗. 

Since the surface can be given as 𝑧 = 𝑓(𝑥, 𝑦), ie   𝑧 = 2 − 𝑥,  we can either 

remember the formula: 

∬ 𝐺⃗ ∙ 𝑑𝑆
𝑆

= ∬ (−(𝐺1)𝑧𝑥 − (𝐺2)𝑧𝑦 + 𝐺3)
𝐷

𝑑𝑥𝑑𝑦 where 𝐺⃗ = ∇ × 𝐹⃗ or 

rederive it by letting 

𝛷⃗⃗⃗(𝑥, 𝑦) =< 𝑥, 𝑦, 2 − 𝑥 > and calculating 𝑇⃗⃗𝑥 × 𝑇⃗⃗𝑦.  

𝑥 + 𝑧 = 2 

𝑆 

𝑥 

𝑦 

𝑧 
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In this example we will use ∬ 𝐺⃗ ∙ 𝑑𝑆
𝑆

= ∬ (−(𝐺1)𝑧𝑥 − (𝐺2)𝑧𝑦 + 𝐺3)
𝐷

𝑑𝑥𝑑𝑦. 

 

Since 𝐺⃗ = ∇ × 𝐹⃗ = (1 + 2𝑦)𝑘⃗⃗,  𝐺1 and 𝐺2 are 0 and 𝐺3 = 1 + 2𝑦. 

∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆 = ∬ (1 + 2𝑦)𝑑𝑥𝑑𝑦
𝑥2+𝑦2≤1

 . 

 

Since we are integrating over a disk, change to polar coordinates: 

= ∫ ∫ (1 + 2𝑟𝑠𝑖𝑛𝜃)𝑟𝑑𝑟𝑑𝜃 = ∫ ∫ (𝑟 + 2𝑟2𝑠𝑖𝑛𝜃)𝑑𝑟𝑑𝜃
1

0

2𝜋

0

1

0

2𝜋

0
  

= ∫
1

2
𝑟2 +

2

3
𝑟3𝑠𝑖𝑛𝜃|

1
0

2𝜋

0
𝑑𝜃 = ∫ (

1

2
+

2

3
𝑠𝑖𝑛𝜃)𝑑𝜃 =

2𝜋

0
𝜋 . 

 

LHS: To calculate ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

 we need to parametrize 𝜕𝑆. 

The boundary curve is the intersection of 𝑥2 + 𝑦2 = 1 and 𝑧 = 2 − 𝑥. 

        𝑥 = 𝑐𝑜𝑠𝑡,            𝑦 = 𝑠𝑖𝑛𝑡,          𝑧 = 2 − 𝑥 = 2 − 𝑐𝑜𝑠𝑡,          0 ≤ 𝑡 ≤ 2𝜋. 

𝑐(𝑡) =< 𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡, 2 − 𝑐𝑜𝑠𝑡 >;      0 ≤ 𝑡 ≤ 2𝜋 

                            𝑐′(𝑡) =< −𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡 >;      

 

∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∫ < −𝑠𝑖𝑛2𝑡, 𝑐𝑜𝑠𝑡, (2 − 𝑐𝑜𝑠𝑡)22𝜋

0
>∙< −𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡 > 𝑑𝑡      

  = ∫ [𝑠𝑖𝑛3𝑡 + 𝑐𝑜𝑠22𝜋

0
𝑡 + 𝑠𝑖𝑛𝑡(2 − 𝑐𝑜𝑠𝑡)2]𝑑𝑡  

  = ∫ sin3 𝑡𝑑𝑡 + ∫ cos2 𝑡𝑑𝑡 + ∫ 𝑠𝑖𝑛𝑡(2 − 𝑐𝑜𝑠𝑡)2𝑑𝑡
2𝜋

0

2𝜋

0

2𝜋

0
  

  = ∫ 𝑠𝑖𝑛𝑡(1 − cos2 𝑡)𝑑𝑡 + ∫ (
1

2
+

1

2
𝑐𝑜𝑠2𝑡) 𝑑𝑡 + ∫ 𝑠𝑖𝑛𝑡(2 − 𝑐𝑜𝑠𝑡)2𝑑𝑡.

2𝜋

0

2𝜋

0

2𝜋

0
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To evaluate the first integral let 𝑢 = 𝑐𝑜𝑠𝑡, 𝑑𝑢 = −𝑠𝑖𝑛𝑡𝑑𝑡.  To evaluate the 3rd 

integral let 𝑢 = 2 − 𝑐𝑜𝑠𝑡, 𝑑𝑢 = 𝑠𝑖𝑛𝑡𝑑𝑡. 

  = −(−𝑐𝑜𝑠𝑡 +
1

3
cos3 𝑡)|

2𝜋
0

+ (
1

2
𝑡 +

1

4
𝑠𝑖𝑛2𝑡|

2𝜋
0

+
1

3
(2 − 𝑐𝑜𝑠𝑡)3|

2𝜋
0

  

  = 𝜋.  

 

 

Ex.  Use Stokes’ theorem to calculate ∬ 𝑐𝑢𝑟𝑙(𝐹⃗
𝑆

) ∙ 𝑑𝑆  where  

𝐹⃗(𝑥, 𝑦, 𝑧) = (𝑥𝑧)𝑖 + (𝑦𝑧)𝑗 + (𝑥𝑦)𝑘⃗⃗  and 𝑆 is the part of the sphere 

𝑥2 + 𝑦2 + 𝑧2 = 4 that lies inside 𝑥2 + 𝑦2 = 1 and above the 𝑥𝑦-plane. 

 

 

 

 

 

 

 

 

∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (𝑐𝑢𝑟𝑙
𝑆

𝐹⃗) ∙ 𝑑𝑆   

𝜕𝑆 is the intersection of 𝑥2 + 𝑦2 + 𝑧2 = 4 and 𝑥2 + 𝑦2 = 1.  Substituting the 

second equation in the first we get: 

1 + 𝑧2 = 4,  or    𝑧 = ±√3,  but since 𝑧 ≥ 0,   𝑧 = √3.  

 

𝑧 = √4 − 𝑥2 − 𝑦2 

𝑆 

𝑥 

𝑦 
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Thus the curve of intersection can be given by: 

𝑥 = 𝑐𝑜𝑠𝑡,      𝑦 = 𝑠𝑖𝑛𝑡,    𝑧 = √3  

𝑐(𝑡) =< 𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡, √3 >;     0 ≤ 𝑡 ≤ 2𝜋.  

  

𝑐′(𝑡) =< −𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 0 >;      

𝐹⃗(𝑐(𝑡)) =< √3𝑐𝑜𝑠𝑡, √3𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑡 >.  

   ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∫ < √3𝑐𝑜𝑠𝑡, √3𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑡 > ∙< −
2𝜋

0

𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 0 > 𝑑𝑡 

                       = ∫ 0𝑑𝑡 = 0
2𝜋

0
 

So ∬ (𝑐𝑢𝑟𝑙
𝑆

𝐹⃗) ∙ 𝑑𝑆  =0. 

 

Notice that any smooth surface which has the same boundary, c, will give the 

same integral value of , ie if 𝜕𝑆1 = 𝜕𝑆2,where both surfaces are 𝐶2 and 𝐹⃗ is 𝐶1, 

      ∬ (∇ ×
𝑆1

𝐹⃗) ∙ 𝑑𝑆 = ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆1

= ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆2

= ∬ (∇ ×
𝑆2

𝐹⃗) ∙ 𝑑𝑆 . 

 

Stokes’ Theorem for Parametrized Surfaces 

Theorem:  Let S be an oriented surface defined by a 1-1 parametrization 

 𝛷: 𝐷 ⊂ ℝ2 → ℝ3, where 𝛷(𝐷) = 𝑆, and 𝐷 is a region to which Green’s theorem 

applies.  Let 𝜕𝑆 denote the oriented boundary of 𝑆 and let 𝐹⃗ be a 𝐶1 vector field 

on 𝑆. Then: 

                                 ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆.⃗⃗ ⃗ 

If S has no boundary (e.g. a sphere, ellipsoid, etc.) then the integral on the RHS is 0.  



11 
 

Ex.    Evaluate ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆 where 𝐹⃗(𝑥, 𝑦, 𝑧) =<𝑒𝑥, 𝑦𝑧2, 𝑠𝑖𝑛𝑧 > and 𝑆 is the 

unit sphere. 

∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆  but 𝜕𝑆 = 0 so 

∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆 = 0.  

 

Ex.   Verify Stokes’ theorem for the portion of the cone given by  

𝛷⃗⃗⃗(𝑟, 𝜃) =< 𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃, 𝑟 >;      0 ≤ 𝑟 ≤ 1,    0 ≤ 𝜃 ≤ 2𝜋   and the vector field 

𝐹⃗(𝑥, 𝑦, 𝑧) =< 𝑦, 𝑧, 𝑥 > . 

 

 

We must show:   ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆.⃗⃗ ⃗ 

RHS:  First calculate ∇ × 𝐹⃗. 

∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑦 𝑧 𝑥

| = −𝑖 − 𝑗 − 𝑘⃗⃗       

 

𝛷⃗⃗⃗(𝑟, 𝜃) =< 𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃, 𝑟 >;      0 ≤ 𝑟 ≤ 1,    0 ≤ 𝜃 ≤ 2𝜋  

𝑇⃗⃗𝑟 =< 𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃, 1 >                  𝑇⃗⃗𝜃 =< −𝑟𝑠𝑖𝑛𝜃, 𝑟𝑐𝑜𝑠𝜃, 0 > 

𝑇⃗⃗𝑟 × 𝑇⃗⃗𝜃 = |
𝑖 𝑗 𝑘⃗⃗

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 1
−𝑟𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃 0

| = −𝑟𝑐𝑜𝑠𝜃𝑖 − 𝑟𝑠𝑖𝑛𝜃𝑗 + 𝑟𝑘⃗⃗ . 
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∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆 = ∬ (
𝐷

∇ × 𝐹⃗) ∙ (𝑇⃗⃗𝑟 × 𝑇⃗⃗𝜃)𝑑𝑟𝑑𝜃  

                                = ∫ ∫ < −1, −1, −1 >∙< −𝑟𝑐𝑜𝑠𝜃, − 𝑟𝑠𝑖𝑛𝜃, 𝑟 > 𝑑𝑟𝑑𝜃
1

0

2𝜋

0
 

                                = ∫ ∫ (𝑟𝑐𝑜𝑠𝜃 + 𝑟𝑠𝑖𝑛𝜃 − 𝑟)
1

0

2𝜋

0
𝑑𝑟𝑑𝜃 

                                = ∫
1

2
𝑟2𝑐𝑜𝑠𝜃 +

1

2
𝑟2𝑠𝑖𝑛𝜃 −

1

2
𝑟2|

1
0

𝑑𝜃
2𝜋

0
 

                                 = ∫ (
1

2
𝑐𝑜𝑠𝜃 +

1

2
𝑠𝑖𝑛𝜃 −

1

2
)

2𝜋

0
𝑑𝜃 = −𝜋. 

 

LHS:           𝑐(𝑡) =< 𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡, 1 > ;   0 ≤ 𝑡 ≤ 2𝜋.                                           

                   𝑐′(𝑡) =< −𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 0 > ;           𝐹⃗(𝑐(𝑡)) =< 𝑠𝑖𝑛𝑡, 1, 𝑐𝑜𝑠𝑡 >  

∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∫ < 𝑠𝑖𝑛𝑡, 1, 𝑐𝑜𝑠𝑡 >∙< −𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 0 > 𝑑𝑡
2𝜋

0
  

                   = ∫ (− sin2 𝑡 + 𝑐𝑜𝑠𝑡)𝑑𝑡 = ∫ (−
1

2
+

1

2
𝑐𝑜𝑠2𝑡

2𝜋

0

2𝜋

0
+ 𝑐𝑜𝑠𝑡)𝑑𝑡 = −𝜋. 

 

 

Notice that if we were trying to find ∬ (∇ ×
𝑆1

𝐹⃗) ∙ 𝑑𝑆 where 𝑆1 were the surface 

given by 𝑥2 + 𝑦2 ≤ 1, 𝑧 = 1,  i.e., the disk of radius 1 in the plane 𝑧 = 1, and 𝐹⃗ 

were the vector field in the previous example, we would already know the 

answer.  This is because 𝜕𝑆 = 𝜕𝑆1 (they are both the circle of radius 1 in the plane 

𝑧 = 1).  Thus by Stokes’ theorem 

     ∬ (∇ ×
𝑆

𝐹⃗) ∙ 𝑑𝑆 = ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆

= ∫ 𝐹⃗ ∙ 𝑑𝑠
𝜕𝑆1

= ∬ (∇ ×
𝑆1

𝐹⃗) ∙ 𝑑𝑆 = −𝜋.   


