Gauss Curvature and the Gauss-Bonnet Theorem

Let @: D — R3, be a smooth parametrized surface S (®(D) = S, ﬁl X ﬁ, + 0).
We want to develop a definition of the Gauss Curvature of a surface at a point
p ES.

Let’s start with 2 curves inthe x, y plane: y = x? and vy = 4x2,
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Our intuition tells us that the curvature of y = 4x? at the point (0,0) is larger
than the curvature of y = x2 at (0,0). We can also intuitively conclude that the
notion of curvature should be related to the second derivative of the function at
that point. Not surprisingly, y” = 8 for the curve y = 4x2 at (0,0), and y” = 2
for the curve y = x2 at (0,0). (In this particular example, the curvature of the 2
curves actually does equal 8 and 2, however, in general, the calculation of
curvature is a more complicated than just calculating the 2" derivative.)



Now let’s parametrize both curves:

c(t) =<t t®> ,(t) =<t 4t >
¢'(t) =< 1,2t > ¢,'(t) =< 1,8t >
¢''(t) =<0,2> ¢, (t) =< 0,8 >

Notice the upward pointing unit normal vector at the point (0,0) to both curves is
n=<0,1>.

Finally, notice that the “curvatures” we calculated above can be gotten by:

") n=<02><01>=2

¢ () -n=<08><01>=8,

Thus it should not surprise us to see 2" derivatives dotted with a unit normal
vector in a formula for curvature of a surface.

To define curvature for a surface we start by defining:
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It can be shown through a messy calculation that:

T, xT,|” = EG — F2,

Let W=EG — F?,

We know that a unit normal vector, 7, on the surface S is given by:
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Now we define 3 functions [, m,n at a point p € S by:

- 9%®
I(p) = Au,v) - 57

R 0%®
m(p) = n(u’ v) ) ouov

S 9%
n(p) =nu,v) ——

We now define the Gauss Curvature, k(p), for p € S:
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k(p) ==~

Ex. Planes have curvature 0 at every point.

The general form of a plane in R3 has the form:
®(u,v) =< (a;u + a,v + az), (byu + byv + bs), (cyu+ cyv + ¢3) >;

where a;, b;, c; are constants.

Notice that since ®(u, v) is linear in u and v we have:

920 920 920
—_— = —_— :
ou? 0, oudv 0, ov? 0

- 920
[(p) =n(u,v) - a_ud: =0

9%d
oudv

m(p) = n(u,v) -

S 9%d
n(p) =n(u,v) - 7 = 0.



Thus we have:

k() =2 = 0.

Ex. Calculate the Gauss curvature of the sphere x? + y? + z? = R2,

®(¢,0) =< R cosOsing, Rsinbsing, Rcosp >; 0< ¢ <m, and 0 < 6 < 2.
ﬁb =< RcosOcosp, Rsinfcos¢p, —Rsing >

ﬁg =< —Rsinfsing, RcosOsing, 0 >

Ty X Tg = | RcosOcos¢p  Rsinfcos¢p —Rsing
—Rsinfsin¢ RcosOsing 0

7(,, X Ty = RZsin?¢pcosOT + R%sin?psindj + R2sindcosdk.

|7¢ X 79| = JR*sin*¢cos26 + R*sin*¢psin26 + R*sinZ¢pcos?¢

= R2sing.
- qu,XTg
Unit normal=N = =——=—;
|T¢><T9

R2sin%¢pcosOi+R2sin? psindj+R%singpcospk
R?%sing

7 = singcosOT + singsind] + cospk .



-
0% —< —RcosOsing, —Rsinfsin¢, —Rcos¢p >

a¢?
P _ < _Rsinfcosp, Reosfcose, 0 >
2600 — sinfcos¢, RcosOcos,
0%d . . .
392 =< —RcosOsing, —Rsinfsing, 0 >
L, 0%
lp)=n- 525
=< singcosO, singsinb, cos¢p >-< —RcosOsing, —RsinfOsingp, —Rcos¢p >
= —Rcos?8 sin? ¢ — Rsin?@ sin® ¢ — Rcos?¢
= —R[sin? ¢(cos? O + sin? 0) + cos? ¢p] = —R
L, 0%®
m(p) =1 536
=< singcosh, singsinb, cos¢p >< —Rsinbcosep, RcosOcosp, 0 >
0%
n(p) =n 502

=< singcosh, singsind, cos¢p >< —RcosOsing, —Rsinbsing, 0 >
= —Rsin?¢ cos? 8 — Rsin?¢ sin? 6

= —Rsin*¢(cos? 6 + sin® §) = —Rsin*¢.



Since |T¢ X Tg| = RZsing,
2
|

W = |Ty x Ty|” = R*sin?¢ .

Finally, we have the Gauss Curvature, k(p):

In-m?> _ (-R)(-Rsin’¢)-(0)*> _ 1

k(p) = w R*sin%¢ - R2

Thus the Gauss Curvature of a sphere of radius R is constant at all points and

| 1
equal to —.

Notice that for a sphere of any radius R:

1 1 1 1 ATTR?
s k@S = [l zzdS = Ml dS =525 =2

R2 21T R2 21T R2

ffs k(p)dS is sometimes referred to as the total curvature of the surface S.

1
Gauss-Bonnet Theorem: ;ﬂs k(p)dS = 2 — 2g, where S is a closed

smooth surface in R3 and g is the genus (number of holes) of the surface.

1 o 1
Thus, EHS k(p)dS for any ellipsoid is equal toEffS k(p)dS for any

sphere (= 2), since both surfaces are genus 0 (no holes). In fact, this remarkable
theorem says that if we had a sphere made of clay and distorted it into any

1
smooth surface we like without punching a hole in it, P times the integral of the

.1
Gauss curvature of that new surface over that surface (ie P times the total

curvature) would still be 2.



