The Riemann Integral

Let f be a bounded real valued function on [a, b] (a, b finite). Let

$$P = \{x_0, x_1, \dots, x_n\}$$
 be a partition of $[a, b]$:

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

We define the lower and upper $\operatorname{\bf Darboux}$ sums for f and P by:

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

where $m_i = \inf \{ f(x) | x_{i-1} < x < x_i \}$

$$M_i = \sup \{ f(x) | x_{i-1} < x < x_i \}.$$

Lower Darboux Sum

Upper Darboux Sum

We define the **lower and upper Riemann sums of** f over [a, b] as:

$$\int_{\underline{a}}^{b} f = \sup\{L(f, P) | P \text{ a partition of } [a, b]\}$$
$$\int_{a}^{\overline{b}} f = \inf\{U(f, P) | P \text{ a partition of } [a, b]\}.$$

Since f is bounded and [a,b] has finite length, $L(f,P)\leq U(f,P)$ and $\int_a^b f \leq \int_a^{\bar{b}} f \;.$

If $\int_a^b f = \int_a^{\overline{b}} f$ we say that f is **Riemann integrable over** [a, b].

Proposition: If P' is a refinement of P (i.e. P' contains all of the points of P plus others) then $L(f,P') \ge L(f,P)$ and $U(f,P') \le U(f,P)$.

Let
$$m'_i = \inf_{x_{i-1} \le x \le t} f(x)$$
 and $m''_i = \inf_{t \le x \le x_i} f(x)$.

Then ${m_i}' \geq m_i$ and ${m_i}'' \geq m_i$.

Now just using the interval $x_{i-1} \le x \le x_i$ we have:

$$L(f,P') = m'_{i}(t - x_{i-1}) + m''_{i}(x_{i} - t)$$

$$\geq m_{i}(t - x_{i-1}) + m_{i}(x_{i} - t)$$

$$= m_{i}(x_{i} - x_{i-1}) = L(f,P).$$

A similar argument shows $U(f, P') \leq U(f, P)$.

Def. A real valued function ψ defined on [a,b] is called a **step function** provided there is a partition $P=\{x_0,x_1,\ldots,x_n\}$ of [a,b] and numbers

$$c_1, c_2, \dots, c_n$$
 such that for $1 \le i \le n$; $\psi(x) = c_i$ if $x_{i-1} < x < x_i$.

Notice that for a step function ψ and any partition Q ,

$$L(\psi, Q) = \sum_{i=1}^{n} c_i (x_i - x_{i-1}) = U(\psi, Q).$$

Thus we get $\int_a^b \psi = \sum_{i=1}^n c_i (x_i - x_{i-1}).$

We can now reformulate the definition of the upper and lower Riemann sum as:

$$\int_{-a}^{b} f = \sup \left\{ \int_{-a}^{b} \varphi \middle| \varphi \text{ a step function and } \varphi \leq f \text{ on } [a, b] \right\}$$
$$\int_{a}^{\overline{b}} f = \inf \left\{ \int_{a}^{\overline{b}} \varphi \middle| \varphi \text{ a step function and } \varphi \geq f \text{ on } [a, b] \right\}.$$

Ex. Let
$$f(x) = 1$$
 if $x \in \mathbb{Q} \cap [0,1]$
$$= 0 \text{ if } x \notin \mathbb{Q} \cap [0,1].$$

Let P be any partition of [0,1], then

$$L(f,P) = 0$$
 and $U(f,P) = 1$.

Thus
$$\int_{0}^{1} f = 0$$
 and $\int_{0}^{\overline{1}} f = 1$.

Hence f is not Riemann integrable on [0,1].

So far we know of two ways in which a sequence of function $\{f_n\}$ can converge to a function f, pointwise and uniformly. We are going to be interested in other notions of convergence. These will be related to integration.

Ex. If $\{f_n\} \to f$ pointwise on [a,b] and f_n and f are Riemann integrable over

$$[a,b]$$
, is it true that $\lim_{n\to\infty}\int_a^b f_n=\int_a^b f$?

No! Here's an example.

Let
$$f_n(x) = 0$$
 if $\frac{1}{n} < x \le 1$ or $x = 0$

$$= n \quad \text{if} \quad 0 < x \le \frac{1}{n}.$$

Notice that $\lim_{n\to\infty} f_n = f$ where f(x) = 0 for all $0 \le x \le 1$.

That is, $\{f_n\} \to f$ pointwise on $x \in [0,1]$.

However, $\int_0^1 f_n = 1$ for all n so

$$\lim_{n\to\infty} \int_0^1 f_n = 1, \text{ but } \int_0^1 f = 0.$$

So
$$\lim_{n\to\infty} \int_0^1 f_n \neq \int_0^1 f$$
.