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                                   Littlewood’s Three Principles 

 

Littlewood’s three principles: 

1. Every measurable set is nearly a finite union of intervals 

2. Every measurable function is nearly continuous 

3. Every pointwise convergent sequence of measurable functions is nearly 

uniformly convergent. 

     We have seen Littlewood’s first principle already.  It takes the form of the 

theorem: 

Theorem:  Let 𝐸 be a measurable set of finite outer measure.  Then for each    

𝜖 > 0, there is a finite disjoint collection of open intervals {𝐼𝑘}𝑘=1
𝑛  for which if 

𝑂 = ⋃ 𝐼𝑘
𝑛
𝑘=1 , then 

                     𝑚∗(𝐸~𝑂) + 𝑚∗(𝑂~𝐸) < 𝜖. 

 

A precise statement of Littlewood’s third principle is: 

Theorem (Egoroff):  Assume 𝐸 has finite measure.  Let {𝑓𝑛} be a sequence of 

measurable functions on 𝐸 that converge pointwise on 𝐸 to the real valued 

function 𝑓.  Then for each 𝜖 > 0, there is a closed set 𝐹 ⊆ 𝐸 for which     

{𝑓𝑛} → 𝑓 uniformly on 𝐹 and 𝑚(𝐸~𝐹) < 𝜖. 

 

 

To prove Egoroff’s theorem we use the following: 

Lemma:  Under the assumptions of Egoroff’s theorem, for each 𝛼 > 0 and     

𝛿 > 0, there is a measurable subset 𝐵 ⊆ 𝐸 and an 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁     

then 

                       |𝑓𝑛 − 𝑓| < 𝛼 on 𝐵   and    𝑚(𝐸~𝐵) < 𝛿. 
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Proof:  Since {𝑓𝑛} → 𝑓 pointwise, 𝑓 is measurable. 

Hence the set {𝑥 ∈ 𝐸| |𝑓(𝑥) − 𝑓𝑘(𝑥)| < 𝛼} is measurable.  

 

Let 𝐸𝑛 = {𝑥 ∈ 𝐸| |𝑓(𝑥) − 𝑓𝑘(𝑥)| < 𝛼  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 𝑛}.  

Then 𝐸𝑛 = ⋂ {𝑥 ∈ 𝐸| |𝑓(𝑥) − 𝑓𝑘(𝑥)| < 𝛼}∞
𝑘=𝑛  

is measurable because it’s the countable intersection of measurable sets.  

 

Notice that 𝐸𝑛 ⊆ 𝐸𝑛+1 ⊆ ⋯  is an ascending collection of sets with: 

                    𝐸 = ⋃ 𝐸𝑛
∞
𝑛=1   since  {𝑓𝑛} → 𝑓 pointwise on 𝐸.  

 

By the continuity of measure we know that:   𝑚(𝐸) = lim
𝑛→∞

𝑚(𝐸𝑛).  

 

Since 𝑚(𝐸) < ∞, we can choose an 𝑁 for which 𝑚(𝐸) − 𝑚(𝐸𝑁) < 𝛿. 

Define 𝐵 = 𝐸𝑁, then by the excision property: 

       𝑚(𝐸~𝐵) = 𝑚(𝐸) − 𝑚(𝐵) = 𝑚(𝐸) − 𝑚(𝐸𝑁) < 𝛿. 

 

Proof of Egoroff’s theorem.     

Using the previous lemma, with 𝛼 =
1

𝑛
  and  𝛿 =

𝜖

2𝑛+1 , Let 𝐵𝑛 be the 

measurable subset of 𝐸 and 𝑁(𝑛) which satisfies the conclusion of the lemma. 

Thus:    𝑚(𝐸~𝐵𝑛) <
𝜖

2𝑛+1    and   |𝑓𝑘 − 𝑓| <
1

𝑛
  on 𝐵𝑛 for all 𝑘 ≥ 𝑁(𝑛).  

 

Define:    𝐵 = ⋂ 𝐵𝑛
∞
𝑛=1  . 

Then      𝑚(𝐸~𝐵) = 𝑚(⋃ (𝐸~𝐵𝑛))∞
𝑛=1                                                                        

                                 ≤ ∑ 𝑚(𝐸~𝐵𝑛) < ∑
𝜖

2𝑛+1 =
𝜖

2
∞
𝑛=1

∞
𝑛=1  .                                                                                                                  
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Now let’s show {𝑓𝑛} → 𝑓 uniformly on 𝐵.  
 

Let 𝜖 > 0.  Choose an index 𝑛0 such that       
1

𝑛0
< 𝜖.   

We have:  |𝑓𝑘 − 𝑓| <
1

𝑛0
  on 𝐵𝑛0

 for all 𝑘 ≥ 𝑁(𝑛0).  

 

However, 𝐵 ⊆ 𝐵𝑛0
 and  

1

𝑛0
< 𝜖   so 

|𝑓𝑘 − 𝑓| < 𝜖  on 𝐵 for all 𝑘 ≥ 𝑁(𝑛0).  

 

Thus {𝑓𝑛} → 𝑓 uniformly on 𝐵 and  𝑚(𝐸~𝐵) <
𝜖

2
 .      

 

Recall that one of the equivalent definitions of measurability of a set 𝐸 said that 

for 𝜖 > 0, there is a closed set 𝐹 ⊆ 𝐸 for which 𝑚(𝐸~𝐹) <
𝜖

2
 . 

So there is a closed set 𝐹 ⊆ 𝐵 with (𝐵~𝐹) <
𝜖

2
 .  

 

𝐹 ⊆ 𝐵 ⊆ 𝐸 so 𝐸~𝐹 = 𝐸~𝐵 ∪ 𝐵~𝐹. 

𝑚(𝐸~𝐹) = 𝑚(𝐸~𝐵) + 𝑚(𝐵~𝐹) =
𝜖

2
+

𝜖

2
= 𝜖 .  

 

Thus  𝑚(𝐸~𝐹) < 𝜖 and {𝑓𝑛} → 𝑓 uniformly on 𝐹. 

 

Ex.  Let  𝑓𝑛(𝑥) = 𝑥𝑛      0 ≤ 𝑥 ≤ 1.  Then {𝑓𝑛} → 𝑓 pointwise where 

        𝑓(𝑥) = 0    if  0 ≤ 𝑥 < 1 

                  = 1    if   𝑥 = 1. 

{𝑓𝑛} does not converge uniformly to 𝑓 on 0 ≤ 𝑥 ≤ 1, but it’s easy to show that 

{𝑓𝑛} converges uniformly to 𝑓(𝑥) = 0, for 0 ≤ 𝑥 ≤ 1 − 𝜖, for any 0 < 𝜖 < 1. 
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Littlewood’s second principle is captured in: 

Lusin’s Theorem:  Let 𝑓 be a real valued measurable function on 𝐸.  Then for 

each 𝜖 > 0 there is a continuous function 𝑔 on ℝ and a closed set 𝐹 ⊆ 𝐸 for 

which:   𝑓 = 𝑔 on 𝐹 and 𝑚(𝐸~𝐹) < 𝜖. 

 

First let’s prove this for simple functions.         

Proof: Let 𝑐1, 𝑐2, … , 𝑐𝑛 be the finite distinct values of 𝑓 taken on 𝐸1, 𝐸2, … , 𝐸𝑛, 

disjoint measurable sets. 

We can find closed sets 𝐹1, 𝐹2, … , 𝐹𝑛 such that 𝐹𝑘 ⊆ 𝐸𝑘 and 𝑚(𝐸𝑘~𝐹𝑘) <
𝜖

𝑛
 

for 1 ≤ 𝑘 ≤ 𝑛.  

 

Let 𝐹 = ⋃ 𝐹𝑘
𝑛
𝑘=1 . 

 

𝐹 is closed because each 𝐹𝑘 is and since {𝐸𝑘}𝑘=1
𝑛  are disjoint: 

      𝑚(𝐸~𝐹) = 𝑚(⋃ (𝐸𝑘~𝐹𝑘)) = ∑ 𝑚((𝐸𝑘~𝐹𝑘)) < 𝜖𝑛
𝑘=1

𝑛
𝑘=1 .  

 

Define 𝑔 on 𝐹 to take the value 𝑐𝑘 on 𝐹𝑘 for 1 ≤ 𝑘 ≤ 𝑛.  

 

𝑔 is continuous on 𝐹 and can be extended to a continuous function on ℝ      

(𝐺 = ℝ~𝐹 is open so is a countable union of disjoint open intervals whose 

endpoints are in 𝐹. Just define 𝑔  linearly along the open interval between the 

values of 𝑔 at the endpoints). 

 

 

 

 

           𝐹1                           𝐹2                          𝐹3                               𝐹4 

𝑦 = 𝑔(𝑥) 
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Proof of Lusin’s theorem: 

First let 𝑚(𝐸) < ∞. 

According to the Simple Approximation Theorem, there is a sequence of simple 

function on 𝐸, {𝑓𝑛} that converges pointwise to 𝑓. 

From the preceding proof, for each 𝑓𝑛 there is a continuous function 𝑔𝑛 such that 

𝑔𝑛 = 𝑓𝑛 on 𝐹𝑛 and  𝑚(𝐸~𝐹𝑛) <
𝜖

2𝑛+1 .    

 

According to Egoroff’s theorem there is a closed set 𝐹0 ⊆ 𝐸 such that  

{𝑓𝑛} converges uniformly to 𝑓 on 𝐹0 and 𝑚(𝐸~𝐹0) <
𝜖

2
 .     

 

Define 𝐹 = ⋂ 𝐹𝑛
∞
𝑛=0 .  

 

Then we have:    𝑚(𝐸~𝐹) = 𝑚((𝐸~𝐹0) ∪ (⋃ (𝐸~𝐹𝑛)))∞
𝑛=1  

                                             ≤ 𝑚(𝐸~𝐹0) + ∑ 𝑚(∞
𝑛=1 𝐸~𝐹𝑛) 

                                             <
𝜖

2
+ ∑

𝜖

2𝑛+1
∞
𝑛=1 = 𝜖.  

 

The set 𝐹 is closed because it’s the intersection of closed sets. 

𝑓𝑛 is continuous on 𝐹 since 𝐹 ⊆ 𝐹𝑛 and 𝑓𝑛 = 𝑔𝑛 on 𝐹𝑛.  

 

{𝑓𝑛} converges uniformly to 𝑓 on 𝐹 since 𝐹 ⊆ 𝐹0 and the uniform limit of 

continuous functions is continuous, so the restriction of 𝑓 to 𝐹 is continuous on 

𝐹.  

 

Finally, there is a continuous function 𝑔 on ℝ whose restriction to 𝐹 equals 𝑓.  

Thus 𝑔 = 𝑓 on 𝐹 and 𝑚(𝐸~𝐹) < 𝜖. 
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If 𝑚(𝐸) = ∞,  define 𝐸𝑛 = 𝐸 ∩ [𝑛, 𝑛 + 1) for 𝑛 ∈ ℤ.  

 

Then {𝐸𝑛}𝑛∈ℤ are disjoint sets of finite measure.  

Thus by Lusin’s theorem for sets of finite measure there exists closed sets 𝐹𝑛 and 

continuous functions 𝑔𝑛: 𝐹𝑛 → ℝ such that 

                         𝑚(𝐸𝑛~𝐹𝑛) <
1

3
(

𝜖

2|𝑛|)    and 𝑓 = 𝑔𝑛 on 𝐹𝑛.      

 

Let 𝐹 = ⋃ 𝐹𝑛𝑛∈ℤ    and   𝑔(𝑥) = ∑ 𝑔𝑛(𝑥)𝜒𝐹𝑛
(𝑥)𝑛∈ℤ . 

Then 𝑔 is continuous on 𝐹.  

 

𝐹 is also closed. 

Since 𝐹 is closed we can extend 𝑔 to a continuous function on ℝ. 

Thus 𝑓 = 𝑔 on 𝐹 and  

                 𝑚(𝐸~𝐹) = 𝑚(⋃ (𝐸𝑛~𝐹𝑛)) = ∑ 𝑚(𝐸𝑛~𝐹𝑛)𝑛∈ℤ𝑛∈ℤ  

                                   = ∑
1

3
(

𝜖

2
|𝑛|) =

𝜖

3
(∑

1

2𝑛 + 1 +∞
0𝑛∈ℤ ∑

1

2𝑛)∞
0       

                                   =
𝜖

3
(3) = 𝜖. 


