The Simple Approximation Theorem

Def. Given a sequence of functions {f,, } with common domain E a function f
on E and asubset G € E, we say:

1) The sequence {f,,} converges to f pointwise on G if
lim f,,(x) = f(x) forallx € G.
n—->00

2) The sequence {f,,} converges to f pointwise a.e. on G if it converges to [
pointwise on G~H, where m(H) = 0.

3) The sequence {f,,} converges to f uniformly on G if for each € > 0,
thereis an N such thatifn > N then:

If(x) — fu(x)| <€eonG

The pointwise limit of continuous functions need not be continuous.

Ex. In the example below prove that f;;, = f pointwise on 0 < x < 1 but not
uniformly.

frx)=x" 0<x<1.
fx)=0 ifo<x<1
=1 ifx=1

To prove pointwise convergence we must show that given any € > 0 there exists
an N such thatifn = N then |f(x) — f,,(x)] < €.

Note: for pointwise convergence N can depend on the point x.

Atx =0, f,(0) = 0 = f(0) foralln, thus f;,(0) = f(0).



If0 < x <1,then f(x) = 0.
If(x) — f,,(x)] =10 —x™| =x"; since0 <x < 1.
So solve x™ < € for n.

n(lnx) < lne

Ine
In(x) *

n >

Ine

So choose N > OR

Notice our formula for N depends on the point x.

Ine Ine
i >
Soif N > G andn >N > G
Ine
Then n> (o)

n(lnx) < lne
x" <€

|0 — x"| < e.
So f, = f pointwiseon 0 < x < 1.

Atx=1,f,(1)=1=f(1)foralilnsof,, > f pointwiseon 0 < x < 1.

Notice that f,,(x) does not converge uniformly to f (x) on [0,1] because:

lne Ine
|0 — x™| < €is equivalentton > ,andasx — 1, is unbounded

In(x) In(x)

above for any fixed €.

Thus there isn’t any fixed N suchthatn > N = [0 — x| < eforall0 < x < 1.
Thus f,,(x) doesn’t converges uniformly to f (x) for 0 < x < 1.



Note: f;, (x) converges uniformly to f(x) for 0 < x < 1 — «, for any
0<a<l

lne lne

This is because < Jforall0<x<1—qa,and0<e < 1.
In(x) = In(1—a)

l
SoN >% would workforall 0 < x <1 — «a.

The pointwise limit of Riemann integrable functions may not be Riemann
integrable.

1 L
Ex. Let f,(x) =n if0<xS£ n \
1 1
=- if—-<x<1.
x n \y = fu(X)
1/n N
‘-.._\_‘-

1
{f} converges pointwise to f (x) = ~ on 0 < x <1 (which is not

Riemann integrable).

Note: The convergence is not uniform. For example, if € = 1 and
1 1
O<x<£; Ifn(x)—f(x)l=|n—;|,whichis

unbounded for all n.



However, we do have:

Prop. Let {f]} be a sequence of measurable functions on E that converges

pointwise a.e. on E to a function f. Then f is measurable.

Proof: Suppose {f]} converges pointwise to f on E~A, where
m(A) =0,ACE.

From an earlier proposition we know that fis measurable if, and only if, its
restriction to E~A is measurable.

Thus, by replacing E by E~A, we can assume the sequence converges
pointwise on E.

We must show {x € E|f (x) < c} is measurable.

Forapoint x € E, since lim f;(x) = f(x),
]—)OO
f(x) < cif, and only if, there exist n,k € Z™ such that:

1 .
filx) <c- ~ forallj = k, where k depends on x and n.

/fj (x)

/ .f(x)

= P

/|

o

| X

1

Butforanyn,j € Z¥, {x € E| fj(x) < c — %} is measurable since
fj is measurable.



Thus, for any k,

ﬂ}?';k{xEEIfj(x)<c—%}= {x€€E f(x)<c—%}

is also measurable.

Now notice:
{x € EIf (x) < ¢} = Uscimeol N2l € BN f(x) < ¢ =]

So f(x) is measurable because the RHS is made up of countable unions
and intersections of measurable sets.

Def. If A is any set, the characteristic function of A, Y4, is the function on R
defined by:

xa(x) =1ifx€e€eA
=0ifx € A.

X4 is measurable if, and only if, A is measurable. Linear combinations of

characteristic functions will play a role in Lebesgue integration.

Def. A real valued function ¢ on a measurable set E is called simple

if it is measurable and takes on only a finite number of values.

Notice that linear combinations and products of simple functions
are simple functions.

If ¢ is a simple function on a domain E that takes the values
C1,Cy, ..., Cp then we can write ¢ as:

o(x) = Xk=1Ck XE, (X); where Ej = {x € Elp(x) = ¢, }.



This representation of a simple function as a linear combination of characteristic
functions is called the canonical representation of the simple function @.

The Simple Approximation Lemma: Let f be a measurable real valued function on
E. Assume f is bounded on E, i.e. thereisan M = 0 for which |f(x)| < M for
all x € E. Then for each € > 0 there are simple functions ¢, and Y. defined on
E such that:

Pe(x) < f(x) < Pe(x)and 0 < P (x) — @ (x) < €onkE.

Proof: Let (a, b) be an open, bounded interval that contains the image
of E,f(E),anda =y, <y, < < Yn_q1 < ¥, = b where

Vi —Yj-1 <€ forl<j<n.

Yo =4

Let [; = [yj_q,¥;) and E; = f71(I))

Since f is measurable and Ij is measurable, each Ej is measurable.



Define<p€=2?=13’j—1)(15j and P = ?:13’jXEj-

Let x € E, since f(E) S (a,b), thereisauniquej,1 < j < nfor
which y;_; < f(x) < y; and therefore:

Pe(x) = yj_1 < f(x) <yj = e (x)

Buty; —¥j—1 <€ so, 0=<9.(x)—px)<e.

Ex. Let f(x) =x% if —2<x<2andx #0
=2 if x=0.
Approximate f (x) by simple functions @, where:
p<f<yPandd<Y—¢p <1llon(-22).

Notice 0 < f(x) < 4, so we need a partition of [0, 4] such that each
interval has length less than 1.1

Onewaytodothisiss: a=0<1<2<3<4<Db

So I; =10,1)
I, =[1,2)
I3 =[2,3)
I, =1[3,4)

Pe = ?:13’]—1)(5,- and . :Zizﬁ’j)(]sj
where Ej = f_l(lj) 1<j<4.



Ei=f1)={&xl0<f(x)<1}={x|0<x?<1,x =0}

= (—1,0) U (0,1)
E,=f1L)={&|1<f(x)<2}={x|1<x?<2,x+0}
= (—v2,-1] u [1,V2)
Ez3=f"1(3) ={x|2<f(x) <3} ={x] 2<x*<3}u{0}
= (—V/3,—V2] U [v2,V3) u {0}
E,=f1() =1{x|3<f(x) <4} =(-2,—3]U[V3,2).

So

011(x)=0-xg, +1-xg, +2 xg, +3 X, = X5, + 2X5, + 3XE,
Y11(x) = xg, + 2XE, + 3XE, + 4XE,.

The Simple Approximation Theorem: An extended real valued function f on a

measurable set E is measurable if, and only if, there is a sequence {¢@,,} of

simple functions on E which converges pointwise to f on E and has

|9, ()| < [f(x)] on E for all n.

If f is non-negative, we may choose {@,, } to be increasing.

Proof: Since each simple function is measurable, and we know from an earlier
proposition that the pointwise limit of measurable functions is
measurable, f is then measurable.

Now assume f is measurable and let’s show we can find a sequence of
of simple functions that converges pointwise to it on E.



Firstlet'sassume f = 0on E. LetE, = {x € E| f(x) < n}.

Then E,, is measurable and the restriction of f to E}, is a non-negative
bounded measurable function. By the previous lemma applied to E,, and

1
with € = - wecan find simple functions @, .:

0<¢p,<f<yY,onE, and 0S¢n—¢n<%onEn.
Also:

0<@p,<f and 0L f -, <Y, — @, < onk,.

We can extend ¢,, to all of E by setting @, (x) = nif f(x) > n.
Now 0 < ¢, < f onallof E.

Now let’s show lim ¢, (x) = f(x) forx € E.
n—oo

Case 1: Assume f(x) is finite.

Choose N € Z* such that f(x) < N.
Then, 0 < f(x) — @, (x) <% form > N.
Sinceifn = N and f(x) < N, then E,, = E.

Thus, lim ¢, (x) = f(x).
n—->0oo
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Case 2: f(x) = oo.

Then @, (x) = nforalln, so lim ¢, (x) = f(x).
n—-oo

By replacing each @,, with max {1 (x), ... , @,(x)} we get {¢,, } increasing.

The general case follows by expressing f by:

fe) =10 —f(x)

where f*(x) and f~(x) are both non-negative functions.



