Lebesgue Measurable Functions

We will assume all functions have domains that are a subset of R and take
values in RU {£o0}.

Prop. Let f have a measurable domain E. Then the following statements are
equivalent.

1. Foreach ¢ € R, the set {x € E|f(x) > c} is measurable.
2. Foreach ¢ € R, theset {x € E|f(x) = c} is measurable.
3. Foreach ¢ € R, theset {x € E|f(x) < c}is measurable.
4. Foreach ¢ € R, theset {x € E|f(x) < c}is measurable.

Each of these properties implies that for each extended real number ¢, the set
{x € E|f(x) = c}is measurable.

Proof: Sets 1 and 4, and 2 and 3, are complements . Since complements of
measurable sets are measurable 1 and 4 are equivalent and 2 and 3 are

equivalent.

1=2.

{x€ €eE|f(x) =c}= ﬂf{’=1{xEE|f(x) > c—%}.

1
By 1, each set {x € E|f(x) > c — E} is measurable.

The countable intersection of measurable sets is measurable hence

{x € E|f(x) = c} is measurable.



2=1.

{x eE|f(x) >c}= U;‘{’zl{x € E|f(x) > c+%}.

By 2, each {x € E|f(x) >c+ %} is measurable hence so is
{x e E|f(x) > c}.

Thus statements 1-4 are equivalent.

Notice that if ¢ € R then
{x€E|[f(x)=cl={x€E|f(x) =c}n{x €E|f(x) <c},

thus {x € E|f(x) = c} is measurable because it’s the intersection of two
measurable sets.

Notice that if ¢ = 00 then:
{x € E|f (x) = o} = Np_q{x € E[f (x) > n}.

Thus {x € E|f(x) = oo} is the countable intersection of measurable sets and
hence measurable.

Def. An extended real valued function defined on E is said to be Lebesgue
measurable (or just measurable), provided its domain E is measurable and it
satisfies one (and hence all) of the four statements in the previous proposition.

Prop. Let f: E = R U {+0}, where E is measurable. Then f is measurable if
and only if for each open set O, the inverse image of O,

f71(0) = {x € E| f(x) € 0}, is a measurable set.



Proof: = If f ~1(0) is measurable for every open set O, then
f1(c, ) = {x|f (x) > c} is measurable and hence f is measurable.

& If f is measurable and O is any open set, then we can express O as the
countable union of bounded, open intervals {I,, };—1, where

each I, can be expressed as B, N A, B, = (=0, b,,), A, = (a,, ™).
Since f is measurable so are f ~1(B,,) and f "1(4,).

f_l(O) = f_l(U%o=1(Bn N An))
= Unsi(F 1B N fH(AR).

Since measurable sets form a o-algebra, f ~1(0) is measurable.

Prop. If f: E = R, where f is continuous and E is measurable, then f is

measurable.

Proof: Since f is continuous, given any open set O in R,

f~1(0) = E n U, where U is open in R.
Thus f ~1(0) is measurable because E and U are.

Hence f is measurable by the previous proposition.

Def. A function that is either increasing on E or decreasing on E is called
monotonic.



Prop. A monotonic function that is defined on an interval is measurable.

(HW problem).

Prop. Let f be an extended real valued function on a measurable set E.

1. If f is measurable on E and f(x) = g(x) almost everywhere (a.e.), then
g is measurable on E.
2. For a measurable subset B € E, f is measurable on E if and only if the

restriction of f to B and E~B are measurable.

Proof: 1. Assume f is measurable.
Let F ={x € E| f(x) # g(x)}.
Notice that:

{xeE|lglx)>c}={x€eF|gx)>c}u({x€E|f(x)>c}n(E~F)).
Since f = g a.e., m(F) = 0 andhence m{x € F| g(x) > c} = 0.

Thus F and {x € F| g(x) > c} are measurable.

Since f is measurable, {x € E| f(x) > c} is measurable.

E ~F is measurable because E and F are.

Thus {x € E|g(x) > c}is measurable, and so is g ().



2. First let’s show that if the restriction of f to B and E~B are measurable then

f is measurable on E.
Notice that:
{xeE|lf(x)>c}={xeB|f(x) >c}u{x e (E~B)| f(x) > c}.

Each set on the RHS is measurable so f is measurable.

Now let’s show that if f is measurable on E then the restriction of f to B and
E~B are measurable.

{xeB|f(x) >c}={x€E|f(x) >c}NnB
{x € (E~B)|f(x) >c}={x € E| f(x) > c} N (E~B)

In each case the RHS is measurable so the restriction of f to B and E~B are
measurable.

Thus f is measurable if and only if the restrictions of f to B and E~B are.

Theorem: Let f and g be measurable function on E that are finite a.e. on E.

1. Foranya,b € R, af + bg is measurable on E.
2. fg is measurable on E.

Note: We need f, g to be finite a.e. because at points where f(x) = oo and
g(x) = —oo, forexample, f + g is not well defined.

Proof: If a = 0, then af = 0 where f is finite (i.e. a.e.), hence af is
measurable. If a # 0O then:

{xEEIaf(x)>c}={xEE|f(x)>§}; ifa>0

{xEEIaf(x)>c}={xEE|f(x)<§}; ifa < 0.

Thus f measurable implies that af is measurable.



Now we just need to show f + g is measurable.

Foreachx € E,if f(x) + g(x) <c, then f(x) <c—g(x).

Since Q is dense in R, there is a rational number, g, for which

f(x)<g<c—g(x) or f(x)<q and g(x) <c—q.

Hence:

{x € Elf(x) +g(x) <c}
= Ugeqlx €EElg(x) <c—g}n{x € E| f(x) < q}].

{x € E| f(x) + g(x) < c}is measurable because it’s a countable union of
measurable sets.

Hence f + g is measurable.

2 Toprove f g is measurable, note that:

fo=-IF+9)?*-r*-9°1

So we just need to show f2 is measurable when f is measurable.

N |

For c = 0:

{x €EIf2(x) >c} ={x € E|f(x) > Vc}u{x € E|f(x) < —Vc}.

Both sets on the RHS are measurable so the LHS is.

Forc < O:

{x € E|f?(x) > c} = E; where E is measurable.

Thus f 2is measurable.



Note: Although continuity and differentiability are preserved under the
composition of functions, measurability is not. That is, there exist measurable

functions f, g such that f (g (x)) is not measurable. However:

Prop. Let g be a measurable real valued function defined on E and f a
continuous real valued function defined on all of R. Then the composition
f(g(x)) is a measurable function on E.

Proof: We show that given any open set O,

(f o g)"1(0) = g7 (f1(0)) is measurable.
Since f is continuous, f ~1(0) is open.
Since g is measurable, g_1 of an open set is measurable.

Hence (f o g)~1(0) = g~ (f ~1(0)) is measurable.

As a consequence of the previous proposition if f is measurable on E then so are

|f| and |f|P forp > 0.

Prop. For a finite family {f} }};—, of measurable functions on E,

max{f; (x), f(x), ..., f,(x)} and min{f; (x), f>(x), ..., f,(x)} are measurable.

Proof: For any C:

{x € Elmax{f;(x), f2(x), ..., fn(x)} > c} = Ug=1{x € Elfi(x) > c}
{x € E[min{f; (x), (%), ..., fn(x)} < c} = Ugq{x € E|fi(x) < c}.
In each case the RHS is the finite union of measurable sets, hence

max{f1 (x), f2(x), ..., fu ()} and min{f; (x), f2(x), ..., fu(x)} are

measurable.



When we discuss Lebesgue integration it will be useful to work with the functions:
fT(x) =max {f(x),0} = 0

f~(x) = max {—f(x),0} =0

Soif f is measurable on E thensoare f* and f .

Also f =ft* —f onE.

Ex. Let f: D — R, where D is measurable. Show f is measurable if and only if
{x € D|f(x) > a} is measurable for each rational number «.

= If f is measurable then {x € D|f (x) > c}is measurable for any real
number C, thus it’'s measurable for any rational number «.

& Assume {x € D|f(x) > a} is measurable for each @ € Q.

Given any ¢ € R, we can find a decreasing sequence {a,} = ¢; a; € Q.

(x € D|f(x) > c} = Ukzy{x € DIf(x) > ay};

So the LHS is measurable because it’s the countable union of measurable sets.

Ex. Show thatif f,g: D = R, D ameasurable setand f, g measurable
functions then {x € D| f(x) > g(x)} is measurable.

Since f, g are measurable functions, sois f — g.
Let h(x) = f(x) — g(x).
x €D| f(x) > g(x)} = {x € D| h(x) > 0}.

But h is measurable so {x € D| f(x) > g(x)} is measurable.



