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                         Approximating Lebesgue Measurable Sets 

 

     So far we know the following about measurable sets: 

1. They form a 𝜎-algebra (so closed under countable unions and complements 

hence also closed under countable intersections) 

2. They contain all Borel sets (the smallest 𝜎-algebra containing all open 

subsets of ℝ) 
3. All sets of measure 0 are measurable. 

 

     Measurable sets contain the following excision property.  If 𝐴 is measurable of 

finite outer measure and 𝐴 ⊆ 𝐸, then 

                      𝑚∗(𝐸~𝐴) = 𝑚∗(𝐸) − 𝑚∗(𝐴) 

since: 

      𝑚∗(𝐸) = 𝑚∗(𝐸 ∩ 𝐴) + 𝑚∗(𝐸 ∩ 𝐴𝑐) = 𝑚∗(𝐴) + 𝑚∗(𝐸~𝐴).  

 

And since 𝑚∗(𝐴) is finite we have: 

                      𝑚∗(𝐸~𝐴) = 𝑚∗(𝐸) − 𝑚∗(𝐴). 

 

Theorem:  Let 𝐸 be any set of real numbers.  Then each of the following is 

equivalent to the measurability of 𝐸: 

1. For each 𝜖 > 0, there’s an open set 𝑂 ⊇ 𝐸 where 𝑚∗(𝑂~𝐸) < 𝜖 

2. There is a 𝐺𝛿  set 𝐺 ⊇ 𝐸 for which 𝑚∗(𝐺~𝐸) = 0 

3. For each 𝜖 > 0, there’s an closed set 𝐹 ⊆ 𝐸 where 𝑚∗(𝐸~𝐹) < 𝜖 

4. There is an 𝐹𝜎 set 𝐹 ⊆ 𝐸 where 𝑚∗(𝐸~𝐹) = 0. 
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Proof:  Assume 𝐸 is measurable and let 𝜖 > 0 be given.  

 

If 𝑚∗(𝐸) < ∞ then by the definition of an outer measure there is a collection 

{𝐼𝑘}𝑘=1
∞  of open intervals which covers 𝐸 and has  

                             ∑ 𝑙(∞
𝑘=1 𝐼𝑘) < 𝑚∗(𝐸) + 𝜖.  

 

Let  𝑂 = ⋃ 𝐼𝑘
∞
𝑘=1  , then 𝑂 is an open set containing 𝐸.  In addition: 

                        𝑚∗(𝑂) ≤ ∑ 𝑙(∞
𝑘=1 𝐼𝑘) < 𝑚∗(𝐸) + 𝜖, 

So                    𝑚∗(𝑂) − 𝑚∗(𝐸) < 𝜖 .  

 

Since 𝐸 is measurable and has finite measure, by the excision property: 

                        𝑚∗(𝑂~𝐸) = 𝑚∗(𝑂) − 𝑚∗(𝐸) < 𝜖. 

 

If  𝑚∗(𝐸) = ∞, let 𝐸𝑘 = 𝐸 ∩ [𝑘, 𝑘 + 1] and 𝐸 = ⋃ 𝐸𝑘𝑘∈ℤ , a countable 

union measurable sets, each with finite measure. 

By the first part we know there is an open set 𝑂𝑘 ⊇ 𝐸𝑘 with  

                            𝑚∗(𝑂𝑘~𝐸𝑘) < 
𝜖

2|𝑘|+2.      

 

Now let 𝑂 = ⋃ 𝑂𝑘𝑘∈ℤ .  

 

𝑂 is open, 𝑂 ⊇ 𝐸, and 𝑂~𝐸 = ⋃ 𝑂𝑘𝑘∈ℤ ~𝐸 ⊆ ⋃ (𝑘∈ℤ 𝑂𝑘~𝐸𝑘).  

(Draw a picture with 2 pairs of sets, 𝑂1, 𝑂2, and 𝐸1, 𝐸2 to see this is true.)  

 

Therefore: 

                    𝑚∗(𝑂~𝐸) ≤ ∑ 𝑚∗(𝑂𝑘~𝐸𝑘) < ∑
𝜖

2|𝑘|+2 < 𝜖𝑘∈ℤ𝑘∈ℤ  
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1 ⇒ 2: 

For each 𝜖 > 0, there’s an open set 𝑂 ⊇ 𝐸 where 𝑚∗(𝑂~𝐸) < 𝜖. 

For each 𝑛 > 0, choose 𝑂𝑛 ⊇ 𝐸 an open set with  𝑚∗(𝑂𝑛~𝐸) <
1

𝑛
 . 

Let  𝐺 = ⋂ 𝑂𝑛
∞
𝑛=1 .  

 

𝐺 is a 𝐺𝛿  set and 𝐺 ⊇ 𝐸.  

 

In addition, for each 𝑛, 𝐺~𝐸 ⊆ 𝑂𝑛~𝐸.   Thus 

𝑚∗(𝐺~𝐸) ≤  𝑚∗(𝑂𝑛~𝐸) <
1

𝑛
 , for all 𝑛. 

Hence  𝑚∗(𝐺~𝐸) = 0. 

 

Now let’s show that 2 ⇒ 𝐸 is measurable. 

Since there is a 𝐺𝛿  set 𝐺 ⊇ 𝐸 for which 𝑚∗(𝐺~𝐸) = 0,  

𝐺~𝐸 has measure 0 and is hence measurable.  

 

𝐺 is a 𝐺𝛿  set, hence it’s measurable. Thus 𝐸 is measurable because 

                        𝐸 = 𝐺 ∩ (𝐺~𝐸)𝑐. 

 

3 and 4 follow from the fact that a set is measurable if and only if its complement 

is measurable, is open if and only if its complement is closed, is 𝐹𝜎 if and only if its 

complement if 𝐺𝛿, and  

𝐸~ ⋃ 𝑉𝑘 = ⋂ (𝐸~𝑉𝑘),           𝐸~ ⋂ 𝑉𝑘 = ⋃ (𝐸~𝑉𝑘)∞
𝑘=1

∞
𝑘=1

∞
𝑘=1

∞
𝑘=1  . 

(DeMorgan Identities). 
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Ex.  show with an example that It is not true that 

a.  if 𝐸 is measurable then there exists a closed set 𝐹 such that if 𝐸 ⊆ 𝐹 and 

𝑚∗(𝐹~𝐸) < 𝜖 

b.  if 𝐸 is measurable then there exists an open set 𝑂 such that 𝑂 ⊆ 𝐸 and 

𝑚∗(𝐸~ 𝑂 ) < 𝜖. 

 

 

a.  Let 𝐸 = ℚ ∩ [0,1].   

Then any closed set 𝐹 ⊇ 𝐸 must have 𝐹 ⊇ [0,1], since 𝐹 must contain all limit 

points of 𝐸.   

Hence 𝑚∗(𝐹) ≥ 1, but 𝑚∗(𝐸) = 0.   

Thus if  𝜖 =
1

2
 , for example, then 𝑚∗(𝐹~𝐸) ≮ 𝜖. 

 

b.  Let 𝐸 = [0,1]~(ℚ ∩ [0,1]) =set of irrational numbers between  0 and 1.   

But the only open set 𝐸 contains is the empty set, 𝜙.   

Thus 𝑚∗(𝐸) = 1 and 𝑚∗(𝜙) = 0.   

Hence if    𝜖 =
1

2
 , for example, then 𝑚∗(𝐸~𝜙 ) ≮ 𝜖. 
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Ex.  Use as a definition of a measurable set that 𝐸 is measurable if there exists a 

𝐺𝛿  set 𝐺 ⊇ 𝐸 for which 𝑚∗(𝐺~𝐸) = 0 and prove that the union of two 

measurable sets is measurable. 

 

Let 𝐷 and 𝐸 be measurable sets.    

Thus there exists 𝐺𝛿  sets 𝐺 ⊇ 𝐷 and 𝐻 ⊇ 𝐸 with 𝑚∗(𝐺~𝐷) = 0 and  

𝑚∗(𝐻~𝐸) = 0 .  

We must show there exists a 𝐺𝛿  set 𝐾 ⊇ 𝐷 ∪ 𝐸 with 𝑚∗(𝐾~(𝐷 ∪ 𝐸)) = 0. 

 

Let’s show 𝐾 = 𝐺 ∪ 𝐻 works. 

 

𝐾 is a 𝐺𝛿  set because it’s the union of 𝐺𝛿  sets. 

𝐺~𝐷 = 𝐺 ∩ 𝐷𝑐 ,  and   𝐻~𝐸 = 𝐻 ∩ 𝐸𝑐.     

 

Notice that: 

(𝐺 ∪ 𝐻)~(𝐷 ∪ 𝐸) = (𝐺 ∪ 𝐻) ∩ (𝐷 ∪ 𝐸)𝑐 ⊆ (𝐺 ∩ 𝐷𝑐) ∪ (𝐻 ∩ 𝐸𝑐)  

(draw a picture to see that this is true) 

 

Thus:  𝑚∗((𝐺 ∪ 𝐻)~(𝐷 ∪ 𝐸)) ≤ 𝑚∗((𝐺 ∩ 𝐷𝑐) ∪ (𝐻 ∩ 𝐸𝑐) ) 

                                                     ≤ 𝑚∗((𝐺 ∩ 𝐷𝑐)) + 𝑚∗((𝐻 ∩ 𝐸𝑐)) 

                                                     = 𝑚∗(𝐺~𝐷) + 𝑚∗(𝐻~𝐸) = 0 + 0 = 0. 

 

Thus 𝐷 ∪ 𝐸 is measurable. 
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Theorem:  Let 𝐸 be a measurable set of finite outer measure.  Then for each    

𝜖 > 0, there is a finite disjoint collection of open intervals {𝐼𝑘}𝑘=1
𝑛  for which if 

𝑂 = ⋃ 𝐼𝑘
𝑛
𝑘=1 , then 

                     𝑚∗(𝐸~𝑂) + 𝑚∗(𝑂~𝐸) < 𝜖.  

 

Proof:  We know that if 𝐸 is measurable then there is an open set 𝑈 such that 

𝐸 ⊆ 𝑈 and  𝑚∗(𝑈~𝐸) <
𝜖

2
 . 

Since 𝑈 is open it’s measurable and has finite measure because 𝐸 does.  

 

Every open set of real numbers is the union of a countable collection of disjoint 

open intervals {𝐼𝑗}𝑗=1
∞ ,   thus   𝑈 = ⋃ 𝐼𝑗

∞
𝑗=1 . 

Now we know that for all 𝑛: 

             ∑ 𝑙(𝑛
𝑗=1 𝐼𝑗) = 𝑚∗(⋃ 𝐼𝑗)𝑛

𝑗=1 ≤ 𝑚∗(𝑈) < ∞.  

Thus     ∑ 𝑙(∞
𝑗=1 𝐼𝑗) < ∞.  

 

Choose an 𝑛 such that     ∑ 𝑙(∞
𝑗=𝑛+1 𝐼𝑗) <

𝜖

2
 .  

Define 𝑂 = ⋃ 𝐼𝑗
𝑛
𝑗=1 .  

 

Since 𝑂~𝐸 ⊆ 𝑈~𝐸  we have: 

                  𝑚∗(𝑂~𝐸) ≤ 𝑚∗(𝑈~𝐸) <
𝜖

2
 . 

However, since 𝐸 ⊆ 𝑈 

                    𝐸~𝑂 ⊆ 𝑈~𝑂 = ⋃ 𝐼𝑗
∞
𝑗=𝑛+1 .  

 

So:       𝑚∗(𝐸~𝑂) ≤ ∑ 𝑙(∞
𝑗=𝑛+1 𝐼𝑗) <

𝜖

2
 .  

Thus we have:             𝑚∗(𝐸~𝑂) + 𝑚∗(𝑂~𝐸) < 𝜖.       


