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                     Completeness of 𝐿𝑝:  The Riesz-Fischer Theorem  

 

Def.  A sequence {𝑓𝑛} in a normed linear space 𝑋 is said to converge to 𝒇 ∈ 𝑿 if 

lim
𝑛→∞

‖𝑓 − 𝑓𝑛‖ = 0.  In that case we write 𝑓𝑛 → 𝑓 or lim
𝑛→∞

𝑓𝑛 = 𝑓 in 𝑋.  

 

Ex.  Let 𝑋 = 𝐶[𝑎, 𝑏], with ‖𝑓‖ = max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)|. 

       In this case 𝑓𝑛 → 𝑓 means lim
𝑛→∞

max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥) − 𝑓𝑛(𝑥)| = 0 or 

       for all 𝜖 > 0 there exists 𝑁 such that if 𝑛 ≥ 𝑁 then 

       ‖𝑓 − 𝑓𝑛‖ = max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥) − 𝑓𝑛(𝑥)| < 𝜖. 

This is precisely the definition of uniform convergence on [𝑎, 𝑏]. 

 

Ex.  Let 𝑋 = 𝐿∞[𝑎, 𝑏], with ‖𝑓‖ =Essential Supremum(𝑓). 

           In this case 𝑓𝑛 → 𝑓 means lim
𝑛→∞

𝐸𝑠𝑠𝑆𝑢𝑝(𝑓 − 𝑓𝑛) = 0  or    

       for all 𝜖 > 0 there exists 𝑁 such that if 𝑛 ≥ 𝑁 then  

       ‖𝑓 − 𝑓𝑛‖ = 𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑢𝑝|𝑓 − 𝑓𝑛| < 𝜖.     

This is the same as saying that 𝑓𝑛 → 𝑓 in 𝐿∞[𝑎, 𝑏] if an only if 𝑓𝑛 → 𝑓 uniformly 

on the complement of a set of measure 0 in [𝑎, 𝑏].  

 

Ex.  Let 𝑋 = 𝐿𝑝(𝐸) with ‖𝑓‖𝑝 = (∫ |𝑓|𝑝)
𝐸

1

𝑝
. 

 𝑓𝑛 → 𝑓 in 𝐿𝑝(𝐸) if and only if 0 = lim
𝑛→∞

‖𝑓 − 𝑓𝑛‖ = lim
𝑛→∞

(∫ |𝑓 − 𝑓𝑛|𝑝)
𝐸

1

𝑝
 

Or  for all 𝜖 > 0 there exists 𝑁 such that if 𝑛 ≥ 𝑁 then  (∫ |𝑓 − 𝑓𝑛|𝑝)
𝐸

1

𝑝
< 𝜖. 
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Def.  A sequence {𝑓𝑛} is a normed linear space 𝑋 is said to be Cauchy in 𝑋 if for 

each 𝜖 > 0 there is an 𝑁 such that if 𝑛, 𝑚 ≥ 𝑁 then ‖𝑓𝑛 − 𝑓𝑚‖ < 𝜖. 

 

Def.  A normed linear space 𝑋 is said to be complete if every Cauchy sequence in 𝑋 

converges to a point (function) 𝑓 ∈ 𝑋.  A complete normed linear space is called a 

Banach space. 

 

There can be more than one way to define a norm on a linear space 𝑋.  For 

example, if 𝑋 = 𝐶[0,1] we could define: 

           ‖𝑓‖ = max
𝑥∈[0,1]

|𝑓(𝑥)|   or     ‖𝑓‖ = ∫ |𝑓|
1

0
. 

Whether a normed linear space is complete depends on which norm you choose. 

 

Ex.  𝐶[0,1] is a Banach space with the norm  ‖𝑓‖ = max
𝑥∈[0,1]

|𝑓(𝑥)|,  but is not a 

Banach space with the norm ‖𝑓‖ = ∫ |𝑓|
1

0
. 

 

     One learns in an undergraduate analysis course that a uniformly convergent 

sequence of continuous functions converges to a continuous function.  This says 

𝐶[0,1] is complete with  ‖𝑓‖ = max
𝑥∈[0,1]

|𝑓(𝑥)|.  

 

However, if we let                    = 1                      if              0 ≤ 𝑥 ≤
1

2
−

1

2𝑛
    

                                   𝑓𝑛(𝑥) = −𝑛𝑥 +
𝑛+1

2
    if   

1

2
−

1

2𝑛
< 𝑥 <

1

2
+

1

2𝑛
       

                                               = 0                      if    
1

2
+

1

2𝑛
≤ 𝑥 ≤ 1   
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Then {𝑓𝑛} is a Cauchy sequence with respect to ‖𝑓‖ = ∫ |𝑓|
1

0
 , but it does not 

converge to an element of 𝐶[0,1].  Hence 𝐶[0,1] is not complete with respect to 

the norm ‖𝑓‖ = ∫ |𝑓|
1

0
. 

 

We will see that all of the 𝐿𝑝(𝐸) spaces, 1 ≤ 𝑝 ≤ ∞ are Banach spaces with 

respect to their standard norms. 

 

Prop.  Let 𝑋 be a normed linear space.  Then every convergent sequence in 𝑋 is a 

Cauchy sequence in 𝑋.  Moreover, a Cauchy sequence in 𝑋 converges if it has a 

convergent subsequence. 

 

Proof:  Suppose 𝑓𝑛 → 𝑓 in 𝑋.  

 

            Then by the triangle inequality, for all 𝑚, 𝑛:  

   ‖𝑓𝑛 − 𝑓𝑚‖ = ‖(𝑓𝑛 − 𝑓) + (𝑓 − 𝑓𝑚)‖ ≤ ‖𝑓𝑛 − 𝑓‖ + ‖𝑓 − 𝑓𝑚‖.  

 

Since 𝑓𝑛 → 𝑓, given any 𝜖 > 0 there is a 𝑁 such that if 𝑛 ≥ 𝑁 then 

                                             ‖𝑓 − 𝑓𝑛‖ <
𝜖

2
 .   

1

2
 1

2
−

1

2𝑛
 

1

2
+

1

2𝑛
 

 

1 

𝑦 = 𝑓𝑛(𝑥) 
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Thus if 𝑚, 𝑛 ≥ 𝑁 then  

            ‖𝑓𝑛 − 𝑓𝑚‖ ≤ ‖𝑓𝑛 − 𝑓‖ + ‖𝑓 − 𝑓𝑚‖ <
𝜖

2
 +

𝜖

2
 = 𝜖 .  

 

Hence {𝑓𝑛} is a Cauchy sequence. 

 

Now let {𝑓𝑛} be a Cauchy sequence in 𝑋 that has a convergent subsequence {𝑓𝑛𝑘
}.  

 

Let 𝜖 > 0. 

 {𝑓𝑛} is Cauchy so there is a 𝑁′ such that 𝑚, 𝑛 ≥ 𝑁′ ⟹ ‖𝑓𝑛 − 𝑓𝑚‖ <
𝜖

2
  .  

 

Since {𝑓𝑛𝑘
} converges to 𝑓 ∈ 𝑋 we can choose a 𝑘 such that 𝑛𝑘 ≥ 𝑁′′ then:       

                                                    ‖𝑓𝑛𝑘
− 𝑓‖ <

𝜖

2
  .  

 

Choose 𝑁 = max (𝑁′, 𝑁′′) then  

‖𝑓 − 𝑓𝑛‖ = ‖(𝑓 − 𝑓𝑛𝑘
) + (𝑓𝑛𝑘

− 𝑓𝑛)‖  

                  ≤ ‖(𝑓 − 𝑓𝑛𝑘
)‖ + ‖(𝑓𝑛𝑘

− 𝑓𝑛)‖ <
𝜖

2
 +

𝜖

2
 = 𝜖.    

Thus 𝑓𝑛 → 𝑓 in 𝑋. 

 

 

 

Def.  Let 𝑋 be a normed linear space.  A sequence {𝑓𝑛} is said to be rapidly Cauchy 

if there is a convergent series of positive numbers ∑ 𝜖𝑘
∞
𝑘=1  such that  

                             ‖𝑓𝑘+1 − 𝑓𝑘‖ ≤ 𝜖𝑘
2  for all 𝑘. 
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Ex.  {
1

𝑛2} is rapidly Cauchy in ℝ, but {
1

𝑛
} is not rapidly Cauchy in ℝ. 

 

For the sequence {
1

𝑛2}: 

|
1

(𝑘+1)2 −
1

𝑘2 | =
2𝑘+1

𝑘2(𝑘+1)2. 

To be rapidly Cauchy we need:  ∑ √
2𝑘+1

𝑘2(𝑘+1)2
∞
𝑘=1 = ∑

√2𝑘+1

𝑘(𝑘+1)
∞
𝑘=1  to converge.   

This does converge through the limit comparison test with the series        

∑
1

𝑘
3
2

< ∞∞
𝑘=1 .  

So {
1

𝑛2} is rapidly Cauchy in ℝ. 

 

 

For the sequence {
1

𝑛
}: 

|
1

𝑘+1
−

1

𝑘
| =

1

𝑘(𝑘+1)
 . 

To be rapidly Cauchy we need: ∑
1

√𝑘(𝑘+1)

∞
𝑘=1   to converge. 

But this series diverges by the limit comparison test with ∑
1

𝑘
= ∞∞

𝑘=1 . 

Thus {
1

𝑛
} is not rapidly Cauchy in ℝ. 
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Notice that if {𝑓𝑛} is a sequence in 𝑋 and we have a sequence of nonnegative 

numbers {𝑎𝑘} with  

                          ‖𝑓𝑘+1 − 𝑓𝑘‖ ≤ 𝑎𝑘  for all 𝑘  then 

𝑓𝑛+𝑘 − 𝑓𝑘 = ∑ (𝑓𝑗+1 − 𝑓𝑗)𝑛+𝑘−1
𝑗=𝑛   for all 𝑛, 𝑘.     

So 

 ‖𝑓𝑛+𝑘 − 𝑓𝑘‖ = ‖∑ (𝑓𝑗+1 − 𝑓𝑗)𝑛+𝑘−1
𝑗=𝑛 ‖ ≤ ∑ ‖𝑓𝑗+1 − 𝑓𝑗‖𝑛+𝑘−1

𝑗=𝑛  

                                                                    ≤ ∑ 𝑎𝑗
∞
𝑗=1    for all 𝑛, 𝑘. 

 

Prop.  Let 𝑋 be a normed linear space.  Then every rapidly Cauchy sequence in 𝑋 is 

Cauchy.  Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence. 

 

Proof:  Let {𝑓𝑛} be rapidly Cauchy and ∑ 𝜖𝑘
∞
𝑘=1 < ∞ for which 

                                 ‖𝑓𝑘+1 − 𝑓𝑘‖ ≤ 𝜖𝑘
2  for all 𝑘.    

Thus: 

 ‖𝑓𝑛+𝑘 − 𝑓𝑛‖ = ‖(𝑓𝑛+1 − 𝑓𝑛) + (𝑓𝑛+2 − 𝑓𝑛+1) + ⋯ + (𝑓𝑛+𝑘 − 𝑓𝑛+𝑘−1)‖ 

                ≤ ‖𝑓𝑛+1 − 𝑓𝑛‖ + ⋯ + ‖𝑓𝑛+𝑘 − 𝑓𝑛+𝑘−1‖ ≤ ∑ 𝜖𝑗
2∞

𝑗=𝑛   for all 𝑛, 𝑘.  

 

Since ∑ 𝜖𝑘
∞
𝑘=1  converges, ∑ 𝜖𝑘

2∞
𝑘=1  converges (by the comparison test).  

 

Thus given 𝜖 > 0 there exists an 𝑁 such that 𝑛 ≥ 𝑁 implies 

              ‖𝑓𝑛+𝑘 − 𝑓𝑛‖ ≤ |∑ 𝜖𝑗
2∞

𝑗=𝑛 | < 𝜖.        

    

Thus {𝑓𝑛} is Cauchy. 
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Now assume  {𝑓𝑛} is Cauchy. 

We can always find an increasing sequence of {𝑛𝑘} such that 

            ‖𝑓𝑛𝑘+1
− 𝑓𝑛𝑘

‖ < (
1

2
)𝑘   for all 𝑘. 

Thus  {𝑓𝑛𝑘
} is rapidly Cauchy because ∑ (

1

√2
)𝑘∞

𝑘=1  converges because it’s a 

geometric series with 𝑟 < 1. 

 

 

Theorem:  Let 𝐸 be a measurable set and 1 ≤ 𝑝 ≤ ∞.  Then every rapidly Cauchy 

sequence in 𝐿𝑝(𝐸) converges both with respect to the 𝐿𝑝(𝐸) norm and pointwise 

a.e. on 𝐸 to a function in 𝐿𝑝(𝐸). 

 

Proof at end of this section. 

 

 

The Riesz-Fischer Theorem:  Let 𝐸 be a measurable set and  1 ≤ 𝑝 ≤ ∞.  Then 

𝐿𝑝(𝐸) is a Banach space.  Moreover if 𝑓𝑛 → 𝑓  in 𝐿𝑝(𝐸), a subsequence of  {𝑓𝑛}  
converges pointwise a.e. on 𝐸 to 𝑓. 

 

Proof:  Let {𝑓𝑛}  be a Cauchy sequence in 𝐿𝑝(𝐸).  Thus there is a subsequence  

{𝑓𝑛𝑘
} that is rapidly Cauchy. 

The previous theorem says that 𝑓𝑛𝑘
→ 𝑓  in 𝐿𝑝(𝐸) and converges to 𝑓 a.e. on 𝐸. 

Since a Cauchy sequence converges if it has a convergent subsequence,   𝑓𝑛 → 𝑓 in 

𝐿𝑝(𝐸).  
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Ex.  Pointwise convergence does not guarantee convergence in 𝐿𝑝(𝐸).  

 

Let  𝑓𝑛(𝑥) = 𝑛   if 0 < 𝑥 <
1

𝑛
    

                  = 0    if  
1

𝑛
≤ 𝑥 ≤ 1. 

Then 𝑓𝑛 ∈ 𝐿𝑝(0,1) for all 𝑛 and 𝑓𝑛(𝑥) → 𝑓(𝑥) = 0 pointwise on (0,1) but {𝑓𝑛} 

is not a Cauchy sequence in 𝐿𝑝(0,1) and hence does not converge in 𝐿𝑝(0,1). 

 

 

 

 

 

 

 

 

 

 

For example in 𝐿1(0,1): 

‖𝑓𝑛 − 𝑓𝑚‖1 = ∫ (𝑚 − 𝑛) + ∫ 𝑛 = 2 −
2𝑛

𝑚

1

𝑛
1

𝑚

1

𝑚
0

 ;  for 𝑚 > 𝑛 

Which doesn’t go to 0 as 𝑛, 𝑚 → ∞. 

 

 

 

1/𝑚         1/𝑛 

𝑚 

𝑛 
𝑦 = 𝑓𝑛(𝑥) 

𝑦 = 𝑓𝑚(𝑥) 
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Ex.  Convergence in 𝐿𝑝(𝐸), 1 ≤ 𝑝 < ∞, does not guarantee pointwise 

convergence a.e. on 𝐸.  

 

Let   𝑓1 = 𝜒[0,1],      𝑓2 = 𝜒
[0,

1

2
]
,      𝑓3 = 𝜒

[
1

2
,1]

,      𝑓4 = 𝜒
[0,

1

4
]
, 

        𝑓5 = 𝜒
[
1

4
,
1

2
]
,      𝑓6 = 𝜒

[
1

2
,
3

4
]
,       𝑓7 = 𝜒

[
3

4
,1]

,      𝑓8 = 𝜒
[0,

1

8
]
, …  

 

𝑓𝑛 → 0 in 𝐿𝑝(𝐸) but {𝑓𝑛(𝑥)} does not converge pointwise for any 𝑥 ∈ [0,1]. 

 

 

However, we do have the following theorem: 

Theorem: Let 𝐸 be a measurable set and 1 ≤ 𝑝 < ∞.  Suppose {𝑓𝑛} is a sequence 

in 𝐿𝑝(𝐸) that converges pointwise a.e. on 𝐸 to 𝑓 ∈ 𝐿𝑝(𝐸) then   𝑓𝑛 → 𝑓 in 

𝐿𝑝(𝐸) if and only if lim
𝑛→∞

∫ |𝑓𝑛|𝑝 = ∫ |𝑓|𝑝
𝐸𝐸

. 

 

Proof:  By excising a set of measure 0 we can assume 𝑓𝑛 → 𝑓 pointwise on 𝐸.  

 

From Minkowski’s inequality (i.e. triangle inequality for 𝐿𝑝(𝐸)) 

                                 ‖𝑓𝑛‖𝑝 ≤ ‖𝑓𝑛 − 𝑓‖𝑝 + ‖𝑓‖𝑝 

So               ‖𝑓𝑛‖𝑝 − ‖𝑓‖𝑝 ≤ ‖𝑓𝑛 − 𝑓‖𝑝.  

 

So if 𝑓𝑛 → 𝑓 in 𝐿𝑝(𝐸) then lim
𝑛→∞

∫ |𝑓𝑛|𝑝 = ∫ |𝑓|𝑝
𝐸𝐸

.  
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Now let’s assume lim
𝑛→∞

∫ |𝑓𝑛|𝑝 = ∫ |𝑓|𝑝
𝐸𝐸

.  

 

Define 𝜑(𝑡) = |𝑡|𝑝 for all 𝑡. 

Since 𝜑′′(𝑡) ≥ 0 for  𝑡 ≠ 0 ,  𝜑 is convex. Thus 

𝜑(
𝑎+𝑏

2
) ≤

𝜑(𝑎)+𝜑(𝑏)

2
   for all 𝑎, 𝑏.     

 

Thus we have:    

0 ≤
|𝑎|𝑝+|𝑏|𝑝

2
− |

𝑎−𝑏

2
|

𝑝
    for all 𝑎, 𝑏.   

  

Define ℎ𝑛(𝑥) =
|𝑓𝑛(𝑥)|

𝑝
+|𝑓(𝑥)|𝑝

2
− |

𝑓𝑛(𝑥)−𝑓(𝑥)

2
|

𝑝
for all 𝑥 ∈ 𝐸.       

      

Since 𝑓𝑛 → 𝑓 pointwise on 𝐸;   ℎ𝑛 → |𝑓|𝑝 pointwise on 𝐸 and ℎ𝑛(𝑥) ≥ 0.  

 

By Fatou’s lemma:    ∫ |𝑓|𝑝 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ ℎ𝑛𝐸𝐸
 

                                               = 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ (
|𝑓𝑛(𝑥)|

𝑝
+|𝑓(𝑥)|𝑝

2
− |

𝑓𝑛(𝑥)−𝑓(𝑥)

2
|

𝑝

𝐸
)   

                                                = ∫ |𝑓|𝑝 − 𝑙𝑖𝑚𝑠𝑢𝑝 ∫ |
𝑓𝑛(𝑥)−𝑓(𝑥)

2
|

𝑝

𝐸𝐸
  

since lim
𝑛→∞

∫ |𝑓𝑛|𝑝 = ∫ |𝑓|𝑝
𝐸𝐸

.  

 

Thus    𝑙𝑖𝑚𝑠𝑢𝑝 ∫ |
𝑓𝑛(𝑥)−𝑓(𝑥)

2
|

𝑝

𝐸
≤ 0.   

 

So lim
𝑛→∞

∫ |𝑓𝑛 − 𝑓|𝑝 = 0
𝐸

  and 𝑓𝑛 → 𝑓 in 𝐿𝑝(𝐸). 
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Notice that in our example of 𝑓𝑛 → 𝑓 pointwise, but not in 𝐿𝑝(0,1), 

lim
𝑛→∞

∫ |𝑓𝑛|𝑝 ≠ ∫ |𝑓|𝑝1

0

1

0
 . 

 
 

 

The Borel-Cantelli Lemma says that if {𝐸𝑘}1
∞ is a countable collection of measurable 

sets with ∑ 𝑚(𝐸𝑘)∞
𝑘=1 < ∞ then almost all 𝑥 ∈ ℝ belong to at most finitely many 

𝐸′𝑠. 

Thus there is a set 𝐸0 with 𝑚(𝐸0) = 0 and if 𝑥 ∈ 𝐸~𝐸0 then there is some 𝐾(𝑥) 

such that if 𝑘 ≥ 𝐾(𝑥) then  

                           |𝑓𝑘+1(𝑥) − 𝑓𝑘(𝑥)| ≤ 𝜖𝑘.  

 

Let   𝑥 ∈ 𝐸~𝐸0. Then we have: 

                |𝑓𝑛+𝑘(𝑥) − 𝑓𝑛(𝑥)| ≤ ∑ |𝑓𝑗+1(𝑥) − 𝑓𝑗(𝑥)|𝑛+𝑘−1
𝑗=𝑛      

                                                   ≤ ∑ 𝜖𝑗
∞
𝑗=𝑛  ;     for all 𝑛 ≥ 𝐾(𝑥) and all 𝑘.  

 

Since ∑ 𝜖𝑗
∞
𝑗=1  converges, the sequence of real numbers {𝑓𝑘(𝑥)} is Cauchy. 

Since the real numbers are complete:  𝑓𝑘(𝑥) → 𝑓(𝑥), a real number. 

Define 𝑓(𝑥) = 0 on 𝐸0.  Thus 𝑓 is defined on 𝐸. 

 

Since    ‖𝑓𝑘+1 − 𝑓𝑘‖𝑝 ≤ 𝜖𝑘
2  for all 𝑘 

            ‖𝑓𝑛+𝑘 − 𝑓𝑘‖𝑝 ≤ ∑ 𝜖𝑗
2∞

𝑗=𝑛     or equivalently:                                      

         ∫ |𝑓𝑛+𝑘 − 𝑓𝑛|𝑝 ≤ (
𝐸

∑ 𝜖𝑗
2∞

𝑗=𝑛 )𝑝  for all 𝑛, 𝑘. 
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Since 𝑓𝑛 → 𝑓 pointwise a.e. on 𝐸, take the limit as 𝑘 → ∞. By Fatou’s lemma we 

get: 

        ∫ |𝑓 − 𝑓𝑛|𝑝 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ |𝑓𝑛+𝑘 − 𝑓𝑛|𝑝 ≤ (∑ 𝜖𝑗
2∞

𝑗=𝑛 )𝑝
𝐸𝐸

   for all 𝑛. 

 

Since ∑ 𝜖𝑘
∞
𝑘=1

2
 converges we have lim

𝑛→∞
∑ 𝜖𝑛

∞
𝑗=𝑛

2
= 0. 

 

Thus we have: 

        lim
𝑛→∞

∫ |𝑓 − 𝑓𝑛|𝑝 = 0
𝐸

  and 𝑓𝑛 → 𝑓 in 𝐿𝑝(𝐸).  

 

 

Theorem:  Let 𝐸 be a measurable set and 1 ≤ 𝑝 ≤ ∞.  Then every rapidly Cauchy 

sequence in 𝐿𝑝(𝐸) converges both with respect to the 𝐿𝑝(𝐸) norm and pointwise 

a.e. on 𝐸 to a function in 𝐿𝑝(𝐸). 

 

Proof:  Assume 1 ≤ 𝑝 < ∞    (𝑝 = ∞ is left as an exercise). 

Let {𝑓𝑛} be a rapidly Cauchy sequence in 𝐿𝑝(𝐸). 

By possibly excising a set of measure 0 we can assume that the 𝑓𝑛′𝑠 are real valued.  

 

Choose ∑ 𝜖𝑘
∞
𝑘=1  such that: 

                             ‖𝑓𝑘+1 − 𝑓𝑘‖𝑝 ≤ 𝜖𝑘
2  for all 𝑘.   

Thus ∫ |𝑓𝑘+1 − 𝑓𝑘|𝑝 ≤ 𝜖𝑘
2𝑝

 
𝐸

 for all 𝑘. 
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Fix 𝑘 ∈ ℤ+. 

|𝑓𝑘+1(𝑥) − 𝑓𝑘(𝑥)| ≥ 𝜖𝑘 if and only if  |𝑓𝑘+1(𝑥) − 𝑓𝑘(𝑥)|𝑝 ≥ 𝜖𝑘
𝑝

 .        

 

By Chebychev’s inequality:   

𝑚{𝑥 ∈ 𝐸| |𝑓𝑘+1(𝑥) − 𝑓𝑘(𝑥)| ≥ 𝜖𝑘} = 𝑚{𝑥 ∈ 𝐸| |𝑓𝑘+1(𝑥) − 𝑓𝑘(𝑥)|𝑝 ≥ 𝜖𝑘
𝑝

}     

                                                                ≤
1

𝜖
𝑘
𝑝 ∫ |𝑓

𝑘+1
(𝑥) − 𝑓

𝑘
(𝑥)|

𝑝

𝐸
      

                                                                ≤ 𝜖𝑘
𝑝
 . 

Since 𝑝 ≥ 1,  ∑ 𝜖𝑘
𝑝∞

1  converges.  

 

Let 𝐸𝑘 = {𝑥 ∈ 𝐸| |𝑓
𝑘+1

(𝑥) − 𝑓
𝑘
(𝑥)| ≥ 𝜖𝑘}. 

Since ∑ 𝜖𝑘
𝑝∞

1  converges,  ∑ 𝑚(𝐸𝑘)∞
𝑘=1  converges.   

 


