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𝐿𝑝 Spaces 

 

Def:   For 𝐸 a measurable set, 1 < 𝑝 < ∞, and a function 𝑓 ∈ 𝐿𝑝(𝐸), 
 define: 

‖𝒇‖𝒑 = (∫ |𝑓|𝑝
𝐸

)
1

𝑝 . 

  

The functional ‖∙‖𝑝 is a norm on 𝐿𝑝(𝐸). 

 It’s clear that ‖𝜆𝑓‖𝑝 = |𝜆|‖𝑓‖𝑝, and ‖𝑓‖𝑝 ≥ 0 with ‖𝑓‖𝑝 = 0 if, 

 and only if, 𝑓 = 0 a.e. on 𝐸. 

 What is less obvious is the triangle inequality: 

‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝. 

 This is called the Minkowski inequality. 

 

Def.  The conjugate of a number 𝑝 ∈ (1, ∞) is the number 𝑞 =
𝑝

𝑝−1
 ,  which is   

          the unique 𝑞 ∈ (1, ∞) for which: 

1

𝑝
+

1

𝑞
= 1. 

 The conjugate of 1 is defined to be  ∞, and the conjugate of ∞ is 

 defined to be 1. 

 

Young’s inequality:  for 1 < 𝑝 < ∞, 𝑞 the conjugate of 𝑝, and any two 

 positive numbers 𝑎, 𝑏, 

𝑎𝑏 ≤
𝑎𝑝

𝑝
+

𝑏𝑝

𝑞
 .     



2 
 

Proof:  𝑓(𝑥) = 𝑒𝑥  has a positive second derivative and therefore is       

           convex, i.e. for any 𝜆 ∈ [0, 1], and any numbers 𝑢, 𝑣. 

                        𝑒𝜆𝑢+(1−𝜆)𝑣 ≤ 𝜆𝑒𝑢 + (1 − 𝜆)𝑒𝑣       

         i.e.             𝑓(𝜆𝑢 + (1 − 𝜆)𝑣) ≤ 𝜆𝑓(𝑢) + (1 − 𝜆)𝑓(𝑣). 

 

 

 

 

 

 

In particular, setting   𝜆 =
1

𝑝
 ,   1 − 𝜆 =

1

𝑞
 ,     𝑢 = 𝑙𝑛𝑎𝑝,     𝑣 = 𝑙𝑛𝑏𝑞 

                   𝑒
(

1

𝑝
ln 𝑎𝑝+

1

𝑞
ln 𝑏𝑞)

≤
1

𝑝
𝑒(ln 𝑎𝑝) +

1

𝑞
𝑒(ln 𝑏𝑞)        

            𝑎𝑏 ≤
1

𝑝
𝑎𝑝 +

1

𝑞
𝑏𝑞 . 

 

 

 

Def.  𝒔𝒈𝒏(𝒇) = 1 if 𝑓(𝑥) ≥ 0 and −1 if 𝑓(𝑥) < 0. 

 

 

 

𝑢                 𝜆𝑢 + (1 − 𝜆)𝑣               𝑣 
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Theorem:  Let 𝐸 be a measurable set, 1 ≤ 𝑝 < ∞, and  𝑞 the conjugate   

 of 𝑝.  If 𝑓 ∈ 𝐿𝑝(𝐸) and 𝑔 ∈ 𝐿𝑞(𝐸), then 𝑓 ∙ 𝑔 is integrable   

 over 𝐸 and, 

∫ |𝑓𝑔|
𝐸

≤  ‖𝑓‖𝑝‖𝑔‖𝑞   (Holder’s inequality) 

 

  Moreover, if 𝑓 ≠ 0, the function: 

𝑓∗ = ‖𝑓‖𝑝
1−𝑝

∙ 𝑠𝑔𝑛(𝑓) ∙ |𝑓|𝑝−1 ∈ 𝐿𝑞(𝐸) 

and ∫ 𝑓 ∙ 𝑓∗
𝐸

= ‖𝑓‖𝑝 and ‖𝑓∗‖𝑞 = 1. 

 

 

Proof:    First let 𝑝 = 1 then 𝑔 ∈ 𝐿∞(𝐸).  

 

   So, ‖𝑔‖∞ = essential upper bound of 𝑔 on 𝐸. 

 

    ∫ |𝑓𝑔|
𝐸

≤  ‖𝑔‖∞ ∫ |𝑓|
𝐸

= ‖𝑔‖∞‖𝑓‖1.  
 

 

    If 𝑝 = 1 , 𝑓∗ = 𝑠𝑔𝑛(𝑓) so 𝑓 ∙ 𝑓∗ = |𝑓| and   

   ∫ 𝑓 ∙ 𝑓∗
𝐸

=  ∫ |𝑓|
𝐸

= ‖𝑓‖1 and ‖𝑓∗‖∞ = 1.  
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  If 𝑝 > 1, assume 𝑓 ≢ 0, 𝑔 ≢ 0 else there is nothing to prove.  

 

 

  Notice that if Holder’s inequality is true for 𝑓 replaced by 
𝑓

‖𝑓‖𝑝
      

            and 𝑔 replaced by 
𝑔

‖𝑔‖𝑞
 then it’s true for 𝑓 and 𝑔 as well since: 

           ∫ |
𝑓

‖𝑓‖𝑝𝐸

𝑔

‖𝑔‖𝑞
| ≤ ‖

𝑓

‖𝑓‖𝑝
‖

𝑝

‖
𝑔

‖𝑔‖𝑞
‖

𝑞

= 1, 

                If and only if  ∫ |𝑓𝑔|
𝐸

≤ ‖𝑓‖𝑝‖𝑔‖𝑞 .  

 

 

 Thus we can assume ‖𝑓‖𝑝 = ‖𝑔‖𝑞 = 1, that is: 

∫ |𝑓|𝑝
𝐸

= 1 and ∫ |𝑔|𝑞
𝐸

= 1.   

In which case Holder’s inequality becomes: ∫ |𝑓𝑔|
𝐸

≤ 1. 

 

Since |𝑓|𝑝 and |𝑔|𝑞 are integrable over 𝐸, 𝑓 and 𝑔 are finite a.e. on 𝐸. 

By Young’s inequality we have: 

|𝑓 ∙ 𝑔| = |𝑓||𝑔| ≤
|𝑓|

𝑝

𝑝
+ |𝑔|

𝑞

𝑞
  a.e. on 𝐸.       

 

By the integral comparison test 𝑓𝑔 is integrable over 𝐸 and,  

 ∫ |𝑓𝑔|
𝐸

≤
1

𝑝
∫ |𝑓|𝑝

𝐸
+

1

𝑞
∫ |𝑔|𝑞

𝐸
=

1

𝑝
+

1

𝑞
= 1.       

 

 Thus Holder’s inequality is proved. 
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Now notice that since 𝑓∗ = ‖𝑓‖𝑝
1−𝑝

𝑠𝑔𝑛(𝑓)|𝑓|𝑝−1, 

                              𝑓 ∙ 𝑓∗ = ‖𝑓‖𝑝
1−𝑝|𝑓|𝑝  a.e. on 𝐸. 

 

So ∫ |𝑓 ∙ 𝑓∗|
𝐸

= ‖𝑓‖𝑝
1−𝑝

∫ |𝑓|𝑝 =
𝐸

‖𝑓‖𝑝
1−𝑝‖𝑓‖𝑝 = ‖𝑓‖𝑝. 

 

And since 𝑞(𝑝 − 1) =
𝑝

𝑝−1
(𝑝 − 1) = 𝑝,     

‖𝑓∗‖𝑞 = (∫ |𝑓∗|𝑞
𝐸

)
1

𝑞 = (∫ ‖𝑓‖𝑝
(1−𝑝)𝑞|𝑓|(𝑝−1)𝑞)

𝐸

1

𝑞
  

                          = (‖𝑓‖𝑝
(1−𝑝)𝑞

)
1

𝑞(∫ |𝑓|(𝑝−1)𝑞)
𝐸

1

𝑞
 

                          = (‖𝑓‖𝑝
−𝑝

)
1

𝑞(∫ |𝑓|𝑝)
𝐸

1

𝑞
 

                          = (∫ |𝑓|𝑝)
𝐸

−
1

𝑞
(∫ |𝑓|𝑝

𝐸
)

1

𝑞 = 1.  

 

If 𝑓 ∈ 𝐿𝑝(𝐸), 𝑓 ≢ 0, we call 𝑓∗ = ‖𝑓‖𝑝
1−𝑝

𝑠𝑔𝑛(𝑓)|𝑓|𝑝−1 the 

conjugate function of 𝒇. 
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The Minkowski inequality: Let 𝐸 be a measurable set and 1 ≤ 𝑝 ≤ ∞.  

 If 𝑓, 𝑔 ∈ 𝐿𝑝(𝐸), then 𝑓 + 𝑔 ∈ 𝐿𝑝(𝐸) and: 

 

‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝. 

 

  

Proof:  We have already seen this is true for 𝑝 = 1 and 𝑝 = ∞.   

 

Assume 1 < 𝑝 < ∞.  

 

Since |𝑓(𝑥) + 𝑔(𝑥)|𝑝 ≤ 2𝑝[|𝑓(𝑥)|𝑝 + |𝑔(𝑥)|𝑝] 

we know 𝑓 + 𝑔 ∈ 𝐿𝑝(𝐸).   

 

If 𝑓 + 𝑔 ≢ 0, then by Holder’s inequality:  

‖𝑓 + 𝑔‖𝑝 = ∫ (𝑓 + 𝑔)(𝑓 + 𝑔)∗
𝐸

  

                   = ∫ 𝑓(𝑓 + 𝑔)∗
𝐸

+ ∫ (𝑔(𝑓 + 𝑔)∗
𝐸

  

                  ≤ ‖𝑓‖𝑝‖(𝑓 + 𝑔)∗‖𝑞 + ‖𝑔‖𝑝‖(𝑓 + 𝑔)∗‖𝑞 
 

But ‖(𝑓 + 𝑔)∗‖𝑞 = 1 so 

 

                        = ‖𝑓‖𝑝 + ‖𝑔‖𝑞. 
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The special case of Holder’s inequality where 𝑝 = 𝑞 = 2 is called the Cauchy-

Schwarz inequality. 

Cauchy-Schwarz inequality:  Let 𝐸 be measurable and 𝑓, 𝑔 ∈ 𝐿2(𝐸), then                          

                𝑓 ∙ 𝑔 ∈ 𝐿1(𝐸) and 

∫ |𝑓 ∙ 𝑔|
𝐸

≤ (√∫ 𝑓2
𝐸

) (√∫ 𝑔2
𝐸

) .  

 

 This is also the analogue of the Cauchy-Schwarz inequality for vectors in 

          ℝ𝑛, i.e. 𝑣⃗, 𝑤⃗⃗⃗ ∈ ℝ𝑛:      |𝑣⃗ ∙ 𝑤⃗⃗⃗| ≤ ‖𝑣⃗‖‖𝑤⃗⃗⃗‖. 

 

 

Ex.  Prove the if  𝑓 ∈ 𝐿2[𝑎, 𝑏], then ∫ |𝑓| ≤ (√𝑏 − 𝑎)(∫ |𝑓|2)
𝑏

𝑎

1

2𝑏

𝑎
 and    

       thus  𝐿2[𝑎, 𝑏] ⊆ 𝐿1[𝑎, 𝑏].   

 

       By the Cauchy-Schwarz inequality we have: 

      ∫ |1 ∙ 𝑓|
𝑏

𝑎
≤ (∫ 1)

𝑏

𝑎

1

2 (∫ |𝑓|2)
𝑏

𝑎

1

2 = (√𝑏 − 𝑎)(∫ |𝑓|2)
𝑏

𝑎

1

2. 

   

 

         Although 𝐿2[𝑎, 𝑏] ⊆ 𝐿1[𝑎, 𝑏],   𝐿1[𝑎, 𝑏] ⊊ 𝐿2[𝑎, 𝑏].     

         For example,  𝑓(𝑥) =
1

√𝑥
∈ 𝐿1[0,1],  but 𝑓(𝑥) =

1

√𝑥
∉ 𝐿2[0,1].      
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Corollary:  Let 𝐸 be a measurable set and 1 < 𝑝 < ∞. Suppose 𝐹 is a family of 

          functions in 𝐿𝑝(𝐸) that is bounded in 𝐿𝑝(𝐸), i.e. there is a constant       

         𝑀 ≥ 0 such that: 

‖𝑓‖𝑝 ≤ 𝑀 for all 𝑓 ∈ 𝐹. 

 Then the family 𝐹 is uniformly integrable over 𝐸. 

 

Proof:  Let 𝜖 > 0.  

          We must show there exists a 𝛿 > 0 such that for any 𝑓 ∈ 𝐹, if 𝐴 ⊆ 𝐸 is        

            measurable and 𝑚(𝐴) < 𝛿 then ∫ |𝑓|
𝐴

< 𝜖.  

 

 Let 𝐴 ⊆ 𝐸 be measurable and 𝑚(𝐴) < ∞. 

 Let 𝑔(𝑥) = 1 for 𝑥 ∈ 𝐴. Then 𝑔 ∈ 𝐿𝑞(𝐴). 

 Since 𝑓 ∈ 𝐿𝑝(𝐸), it’s restriction to 𝐴 is in 𝐿𝑝(𝐴). 

          By Holder’s inequality: 

                              ∫ |𝑓|
𝐴

= ∫ |𝑓|
𝐴

𝑔 ≤ (∫ |𝑓|𝑝
𝐴

)
1

𝑝 ∙ (∫ |𝑔|𝑞
𝐴

)
1

𝑞.  

 

          But for all 𝑓 ∈ 𝐹: 

(∫ |𝑓|𝑝
𝐴

)
1

𝑝 ≤ (∫ |𝑓|𝑝
𝐸

)

1

𝑝
≤ 𝑀 and (∫ |𝑔|𝑞

𝐴
)

1

𝑞 = (𝑚(𝐴))
1

𝑞.  

 

 So, ∫ |𝑓|
𝐴

≤ 𝑀(𝑚(𝐴))
1

𝑞.  

          Let   𝛿 = (
𝜖

𝑀
)𝑞 .  

          Then 𝑚(𝐴) < (
𝜖
𝑀

)
𝑞

    and    ∫ |𝑓|
𝐴

< 𝑀 ∙ ((
𝜖
𝑀

)
𝑞
)

1
𝑞

= 𝜖.       
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Corollary:  Let 𝐸 be a measurable set of finite measure and  

1 ≤ 𝑝1 < 𝑝2 ≤ ∞.  

Then, 𝐿𝑝2(𝐸) ⊆ 𝐿𝑝1(𝐸)  

and ‖𝑓‖𝑝1
≤ 𝑐‖𝑓‖𝑝2

for all 𝑓 ∈ 𝐿𝑝2(𝐸)   

where 𝑐 = [𝑚(𝐸)]
(

𝑝2−𝑝1
𝑝2𝑝1

)
 if 𝑝2 < ∞ and                                                       

           𝑐 = [𝑚(𝐸)]
(

1
𝑝1

)
   if 𝑝2 = ∞.     

 

Proof: Assume 𝑝2 < ∞.  

          Define 𝑝 =
𝑝2

𝑝1
> 1 and let 𝑞 be the conjugate of 𝑝.     

           Let 𝑓 ∈ 𝐿𝑝2(𝐸). So ∫ |𝑓|𝑝2
𝐸

< ∞.  

 

 Notice that 𝑓𝑝1 ∈ 𝐿𝑝(𝐸) since ∫ |𝑓𝑝1|𝑝
𝐸

= ∫ |𝑓|𝑝2
𝐸

< ∞.  

 And 𝑔 = 𝜒𝐸  belongs to 𝐿𝑞(𝐸) because 𝑚(𝐸) < ∞. 

 

 By the Holder inequality: 

∫ |𝑓|𝑝1
𝐸

= ∫ |𝑓|𝑝1
𝐸

∙ 𝑔 ≤ ‖𝑓𝑝1‖𝑝‖𝑔‖𝑞  

        = (∫ |𝑓𝑝1|
𝑝2
𝑝1

𝐸
)

𝑝1
𝑝2

 (∫ |𝑔|𝑞
𝐸

)

1

𝑞
 

  =  [(∫ |𝑓|𝑝2
𝐸

)

1

𝑝2]𝑝1  (𝑚(𝐸))
1

𝑞  

= ‖𝑓‖𝑝2

𝑝1  (𝑚(𝐸))
1
𝑞 . 
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So:                ‖𝑓‖𝑝1
= (∫ |𝑓|𝑝1

𝐸
)

1

𝑝1 ≤ ‖𝑓‖𝑝2
(𝑚(𝐸))

1

𝑞
(

1

𝑝1
)
  

                                        𝑝 =
𝑝2

𝑝1
 ,                 and  

1

𝑝
+

1

𝑞
= 1          

                                        so  
1

𝑝
= 1 −

𝑝1

𝑝2
          and    

1

𝑞
∙

1

𝑝1
=  

𝑝2−𝑝1

𝑝1𝑝2
   

                       ‖𝑓‖𝑝1
≤  ‖𝑓‖𝑝2

(𝑚(𝐸))
(

𝑝2−𝑝1
𝑝1𝑝2

)
.  

 

 

If 𝑝2 = ∞ and 𝑓 ∈ 𝐿∞(𝐸) then 

        ‖𝑓‖𝑝1
= (∫ |𝑓|𝑝1

𝐸
)

1

𝑝1 ≤ [(‖𝑓‖∞)𝑝1 ∫ 1]
𝐸

1

𝑝1 

                                                 = ‖𝑓‖∞(𝑚(𝐸))
1

𝑝1. 

 

 

Ex.     Show that If 𝐸 = [0,1]  and 1 ≤ 𝑝1 < 𝑝2 ≤ ∞,  𝐿𝑝2(𝐸) is a 

            proper subspace of 𝐿𝑝1(𝐸).  

  

 𝑚(𝐸) < ∞  so 𝐿𝑝2(𝐸) ⊆ 𝐿𝑝1(𝐸). 

 Let 𝑓(𝑥) = 𝑥𝛼 , 0 < 𝑥 ≤ 1,   where   −
1

𝑝1
< 𝛼 ≤ −

1

𝑝2
 , 

 then 𝑓(𝑥) ∈ 𝐿𝑝1(𝐸) ~ 𝐿𝑝2(𝐸).  

 For example, if 𝑝1 = 1,   𝑝2 = 2;    −1 < 𝛼 ≤  −
1

2
 

 then 𝑓(𝑥) = 𝑥𝛼 is 𝐿1((0,1]) since ∫ 𝑥𝛼1

0
=

1

1+𝛼
 , but ∫ 𝑥2𝛼1

0
= ∞. 
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Ex.     In general, if 𝑚(𝐸) = ∞ there are no inclusion relations among 

 𝐿𝑝(𝐸) spaces. For example, if 𝐸 = (0, ∞) and 𝑓(𝑥) =
𝑥

−
1
2

1+|ln 𝑥|
 

𝑓 ∈ 𝐿𝑝(𝐸) if, and only if, 𝑝 = 2. 


