Completeness of LP: The Riesz-Fischer Theorem

Def. Asequence {f,,} in a normed linear space X is said to converge to f € X if
llm ||f fall = 0. Inthat case we write f;, = f or lim f,, = fin X.

n—>0oo

Ex. Let X = C[a, b], with ||f]| = xren[g)é] |f (x)].

In this case f;, = f means lim rEn[aX |f(x) — f,(x)] =0 or
n—o x

for all € > 0 there exists N such thatif n = N then
If — full = max |f(x) — fL,(x)] <.
x€[a,b]

This is precisely the definition of uniform convergence on [a, b].

Ex. Let X = L®[a, b], with ||f|| =Essential Supremum(f).

In this case f;, = f means lim EssSup(f — f,,) = 0 or
n—oo

for all € > 0 there exists N such thatif n = N then

lf — fnll = Essential Sup|f — f,,| < €.

This is the same as saying that f;, = f in L®[a, b] ifan only if f,, = f uniformly
on the complement of a set of measure 0 in [a, b].

ex. Let X = LP(E) with [Ifll, = ([, IfIP)".
fu = finP(B) itandonly it0 = lim|If = full = lim (f, 1f = ful?)”

Or forall € > 0 there exists N such thatifn = N then (fE If — f,IP)! <e.



Def. A sequence {fn} is a normed linear space X is said to be Cauchy in X if for
each € > 0 thereisan N such thatifn,m = N then ||f,, — finll < €.

Def. A normed linear space X is said to be complete if every Cauchy sequence in X
converges to a point (function) f € X. A complete normed linear space is called a
Banach space.

There can be more than one way to define a norm on a linear space X. For
example, if X = C[0,1] we could define:

Ifll = max |£()] or IIfll =], Ifl.

x€[0,1]

Whether a normed linear space is complete depends on which norm you choose.

Ex. C[0,1] is a Banach space with the norm [|f]|| = m[%l)i] |f (x)|, butisnota
x€[0,

1
Banach space with the norm || || = fo 1f].

One learns in an undergraduate analysis course that a uniformly convergent
sequence of continuous functions converges to a continuous function. This says

C[0,1] is complete with ||f]| = xrg[%)i] |f (x)].
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Then {f,,} is a Cauchy sequence with respect to || || = fo |f| , but it does not

converge to an element of C[0,1]. Hence C[0,1] is not complete with respect to

1
the norm [I£1l = f; If1.

We will see that all of the LP (E') spaces, 1 < p < 0o are Banach spaces with
respect to their standard norms.

Prop. Let X be a normed linear space. Then every convergent sequence in X isa

Cauchy sequence in X. Moreover, a Cauchy sequence in X converges if it has a
convergent subsequence.

Proof: Suppose f,; = f in X.

Then by the triangle inequality, for all m, n:

o = full = 1o = ) + (F =l < N fa = FILH N = fin .
Since f,, = f, givenany € > 0 thereisa N such thatifn = N then

If = full <35



Thusifm,n = N then

“fn_fm” < ||fn_f||+”f_fm” <§ +§ = €.

Hence {f,} is a Cauchy sequence.

Now let {f,, } be a Cauchy sequence in X that has a convergent subsequence {fy, }.

Let € > 0.

{f.} is Cauchy so thereisa N’ suchthatm,n = N' = ||f;, — finll < g :

Since {fy, } converges to f € X we can choose a k such thatn, > N"' then:

I = £l <5 -

Choose N = max (N',N'") then

If = fll = [|(f = fu) + e = £
< |[|(F = I+ 1 = £l <5 +3 =€

Thus f, = f in X.

Def. Let X be a normed linear space. A sequence {f;} is said to be rapidly Cauchy
if there is a convergent series of positive numbers ).~ €) such that

| fier1 — ficll < € forallk.



1 1
Ex. {ﬁ} is rapidly Cauchy in R, but {;} is not rapidly Cauchy in R.

1
For the sequence {ﬁ}

1 1 2k+1

|(k+1)2 k2! k2(k+1)2

2k+1 V2k+1
To be rapidly Cauchy we need: Zk 1 kz(k+1)2 Zk 1 (et D) to converge.

This does converge through the limit comparison test with the series

1

(0]

D13 < 00,
k2

1
So {ﬁ} is rapidly Cauchy in R.

1
For the sequence {;}

1 1 1

k+1 k k(k+1)

1
To be rapidly Cauchy we need: Zk 1 \/7 to converge.
k(k+1)

1
But this series diverges by the limit comparison test with Z,oco=1 " = 00,

1
Thus {E} is not rapidly Cauchy in R.



Notice that if {fn} is a sequence in X and we have a sequence of nonnegative
numbers {a; } with

fx+1 — frll < ay forallk then

ok — fr = Zn+k 1(fj+1 — fj) foralin, k.
So

ek = filll = I fren — AN < 25 fier = £l

< 2;(;1 a; foralln, k.

Prop. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is
Cauchy. Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence.

Proof: Let {f,,} be rapidly Cauchy and ).p; €; < oo for which

Ifi+1 — frll < 6;% forall k.
Thus:

“fn+k - fn” = ”(fn+1 - fn) + (fn+2 - fn+1) + -+ (fn+k - fn+k—1)”
< lfarr = fall + - + Wk — frvn—all < 252 n€] foralln, k.

Since Y. pq €) converges, Y. €~ converges (by the comparison test).

Thus given € > 0 there exists an N such that n = N implies

||fn+k fn” = |Z] =n ] | <E€

Thus {f,,} is Cauchy.



Now assume {f,} is Cauchy.

We can always find an increasing sequence of {nk} such that

||fnk+1 - fnk” < (%)k forall k.

1
Thus {fy, } is rapidly Cauchy because Z?:l(ﬁ)k converges because it’s a

geometric series with7 < 1.

Theorem: Let E' be a measurable setand 1 < p < 00. Then every rapidly Cauchy
sequence in LP (E) converges both with respect to the LP (E") norm and pointwise
a.e. on E to a function in LP (F).

Proof at end of this section.

The Riesz-Fischer Theorem: Let E be a measurable setand 1 < p < . Then
LP(E) is a Banach space. Moreoverif f, = f in LP(E), a subsequence of {f,}

converges pointwise a.e.on E to f.

Proof: Let {f,} bea Cauchy sequence in LP(E). Thus there is a subsequence
{fn, } that s rapidly Cauchy.

The previous theorem says that f,, — f in LP(E’) and convergesto f a.e.on E.

Since a Cauchy sequence converges if it has a convergent subsequence, fn - f in

LP(E).



Ex. Pointwise convergence does not guarantee convergence in LP (E).

1
Let f,(x) =n if0<x<£

1
=0 f—<x<1.
n

Then f,, € LP(0,1) foralln and f,(x) = f(x) = 0 pointwise on (0,1) but {f;,}
is not a Cauchy sequence in LP(0,1) and hence does not converge in LP (0,1).

Y = fm(®)

Y= fa(%)

1/m 1-/n

For example in L1(0,1):
1

1
— - 2n
”fn_fmlll =f0m(m—n)+f1n= 2—;; form>n

m

Which doesn’t goto 0 as n, m — .



Ex. Convergencein LP(E), 1 < p < o0, does not guarantee pointwise

convergence a.e. on E.

Let fl — X[O,l]' f2 = X[O%]l f3 = X[%,l]’ f4 - X[Oll]’

4

f5 = X[%%]l f6 — X[%%]' f7 — X[%,l]' f8 — X[O%]’

fn = 0in LP(E) but {f;,(x)} does not converge pointwise for any x € [0,1].

However, we do have the following theorem:

Theorem: Let E' be a measurable setand 1 < p < oo. Suppose {f,,} is a sequence
in LP(E) that converges pointwise a.e.on E to f € LP(E) then f,, = f in

LP(E) if and only ileli_r>{)1o fE |fnl? = fE If|P.

Proof: By excising a set of measure 0 we can assume f,; = f pointwise on E..

From Minkowski’s inequality (i.e. triangle inequality for LP (E))

Ifallp < lfa = Fllp +1I£1lp
So 1 fally = Fllp < Wl = Fllp-

Soif f, = fin LP(E) then lim fE |fnl? = fE If|P.
n—>00



10
’ : P — p
Now Ietsassumeglm fE |11l —fE |f1P.

Define @(t) = |t|P forall t.

Since "' (t) = 0for t # 0, ¢ is convex. Thus

+b (@+o(b
(p(az )Sfpa @(b)

> foralla, b.

Thus we have:

|a|P+|b|P a—b P
2 —| 2 |

0< foralla,b.

£, +IfFGOP |f LO)—f(x) P

5 | forallx € E.

Define h,,(x) =

Since f;, = f pointwiseon E; h, — |f|P pointwise on E and h,,(x) = O.

By Fatou’s lemma: fE If|P < liminff h,

[ (x>lp+lf(x)|p _ fa®1C) Py
2

= liminf [ (2
= [, IfIP —limsup |,

since lim [ f,lP = [, IfIP.

p
<0.

Thus  limsup [, z

So llmf —fIP =0 and f,, = finLP(E).
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Notice that in our example of f,, = f pointwise, but notin L?(0,1),

. 1 1
Tim [ 1fl? # ) 1P

The Borel-Cantelli Lemma says that if {E} }7~ is a countable collection of measurable
sets with ).p—1 M(E)) < o then almost all x € R belong to at most finitely many
E's.

Thus there is a set Ey with m(Ey) = 0 and if x € E~E, then there is some K (x)
such that if k = K (x) then

|fier1 () — frr ()| < €.

Let x € E~E,. Then we have:

frer () = (O] < ZFETH 1) = fi(0)]

< Yjn€ ; foralln = K(x)andallk.

Since Zj-o:l € converges, the sequence of real numbers {f} (x)} is Cauchy.

Since the real numbers are complete: fi,(x) = f(x), areal number.

Define f(x) = 0 on Ej. Thus f is defined on E.

since ||fir1 — frell, < €f forallk

||fn+k _ fk”p < Z}in Ejz or equivalently:

fE |fnsk — falP < (Xjin Ejz)p foralln, k.
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Since f;, = f pointwise a.e. on E, take the limit as k — 0. By Fatou’s lemma we
get:

fE |f — ful? < liminf fE |fosk — falP < (Z(}o:n Ejz)p for all n.

: 2 : 2
Since Yy =1 €~ converges we have lim }%2, €,” = 0.

n—->00

Thus we have:

TILI_I;EOIE |f — ful? =0 and f;, = fin LP(E).

Theorem: Let E' be a measurable setand 1 < p < 00. Then every rapidly Cauchy
sequence in LP (E) converges both with respect to the LP (E") norm and pointwise
a.e. on E to a function in LP (F).

Proof: Assume 1 < p < 00 (p = o is left as an exercise).
Let {f,,} be a rapidly Cauchy sequence in LP (E).

By possibly excising a set of measure 0 we can assume that the fn's are real valued.

Choose Y.p— € such that:
Ifkr1 = frllp < eg forall k.

Thus fE | frea1 — frlP < Eip forall k.



Fixk € Z*.

|fk+1(x) — fr (x)| = € ifand only if |fi41(x) — fr ()P = E;Iz :

By Chebychev’s inequality:

mix € E| [fesr(0) — fr (O] = €} = m{x € E| |fess(x) — £ )IP = €7}
< éIE a0 = £ GO
< ei .

Sincep = 1, Y3 €k converges.

Let Ex, = {x € E| |f,,,(x) — f, ()] = €}

Since )3 €1, converges, Yp—; m(E}) converges.
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