Completeness of L^p : The Riesz-Fischer Theorem

Def. A sequence $\{f_n\}$ in a normed linear space X is said to **converge to** $f \in X$ if $\lim_{n \to \infty} \|f - f_n\| = 0$. In that case we write $f_n \to f$ or $\lim_{n \to \infty} f_n = f$ in X.

Ex. Let
$$X=C[a,b]$$
, with $\|f\|=\max_{x\in[a,b]}|f(x)|$. In this case $f_n\to f$ means $\lim_{n\to\infty}\max_{x\in[a,b]}|f(x)-f_n(x)|=0$ or for all $\epsilon>0$ there exists N such that if $n\geq N$ then

$$||f - f_n|| = \max_{x \in [a,b]} |f(x) - f_n(x)| < \epsilon.$$

This is precisely the definition of uniform convergence on [a, b].

Ex. Let
$$X=L^\infty[a,b]$$
, with $\|f\|=$ Essential Supremum (f) . In this case $f_n\to f$ means $\lim_{n\to\infty} EssSup(f-f_n)=0$ or for all $\epsilon>0$ there exists N such that if $n\geq N$ then

This is the same as saying that $f_n \to f$ in $L^{\infty}[a,b]$ if an only if $f_n \to f$ uniformly on the complement of a set of measure 0 in [a,b].

Ex. Let
$$X=L^p(E)$$
 with $\|f\|_p=\left(\int_E\ |f|^p\right)^{\frac{1}{p}}$.

 $||f - f_n|| = Essential Sup|f - f_n| < \epsilon.$

$$f_n \to f$$
 in $L^p(E)$ if and only if $0 = \lim_{n \to \infty} ||f - f_n|| = \lim_{n \to \infty} (\int_E |f - f_n|^p)^{\frac{1}{p}}$

Or for all $\epsilon>0$ there exists N such that if $n\geq N$ then $\left(\int_{E}|f-f_{n}|^{p}\right)^{\frac{1}{p}}<\epsilon$.

Def. A sequence $\{f_n\}$ is a normed linear space X is said to be **Cauchy** in X if for each $\epsilon>0$ there is an N such that if $n,m\geq N$ then $||f_n-f_m||<\epsilon$.

Def. A normed linear space X is said to be **complete** if every Cauchy sequence in X converges to a point (function) $f \in X$. A complete normed linear space is called a **Banach** space.

There can be more than one way to define a norm on a linear space X. For example, if X = C[0,1] we could define:

$$||f|| = \max_{x \in [0,1]} |f(x)|$$
 or $||f|| = \int_0^1 |f|$.

Whether a normed linear space is complete depends on which norm you choose.

Ex. C[0,1] is a Banach space with the norm $\|f\|=\max_{x\in[0,1]}|f(x)|$, but is not a Banach space with the norm $\|f\|=\int_0^1|f|$.

One learns in an undergraduate analysis course that a uniformly convergent sequence of continuous functions converges to a continuous function. This says C[0,1] is complete with $||f|| = \max_{x \in [0,1]} |f(x)|$.

However, if we let
$$=1 \qquad \qquad \text{if} \qquad 0 \leq x \leq \frac{1}{2} - \frac{1}{2n}$$

$$f_n(x) = -nx + \frac{n+1}{2} \quad \text{if} \quad \frac{1}{2} - \frac{1}{2n} < x < \frac{1}{2} + \frac{1}{2n}$$

$$=0 \qquad \qquad \text{if} \quad \frac{1}{2} + \frac{1}{2n} \leq x \leq 1$$

Then $\{f_n\}$ is a Cauchy sequence with respect to $\|f\|=\int_0^1|f|$, but it does not converge to an element of C[0,1]. Hence C[0,1] is not complete with respect to the norm $\|f\|=\int_0^1|f|$.

We will see that all of the $L^p(E)$ spaces, $1 \le p \le \infty$ are Banach spaces with respect to their standard norms.

Prop. Let X be a normed linear space. Then every convergent sequence in X is a Cauchy sequence in X. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof: Suppose $f_n \to f$ in X.

Then by the triangle inequality, for all m, n:

$$||f_n - f_m|| = ||(f_n - f) + (f - f_m)|| \le ||f_n - f|| + ||f - f_m||.$$

Since $f_n \to f$, given any $\epsilon > 0$ there is a N such that if $n \geq N$ then

$$||f-f_n||<\frac{\epsilon}{2}.$$

Thus if $m, n \geq N$ then

$$||f_n - f_m|| \le ||f_n - f|| + ||f - f_m|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
.

Hence $\{f_n\}$ is a Cauchy sequence.

Now let $\{f_n\}$ be a Cauchy sequence in X that has a convergent subsequence $\{f_{n_k}\}$.

Let $\epsilon > 0$.

 $\{f_n\}$ is Cauchy so there is a N' such that $m,n\geq N'\Longrightarrow \|f_n-f_m\|<rac{\epsilon}{2}$.

Since $\{f_{n_k}\}$ converges to $f\in X$ we can choose a k such that $n_k\geq N''$ then:

$$||f_{n_k} - f|| < \frac{\epsilon}{2} .$$

Choose $N = \max(N', N'')$ then

$$||f - f_n|| = ||(f - f_{n_k}) + (f_{n_k} - f_n)||$$

$$\leq ||(f - f_{n_k})|| + ||(f_{n_k} - f_n)|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $f_n \to f$ in X.

Def. Let X be a normed linear space. A sequence $\{f_n\}$ is said to be **rapidly Cauchy** if there is a convergent series of positive numbers $\sum_{k=1}^{\infty} \epsilon_k$ such that

$$||f_{k+1} - f_k|| \le \epsilon_k^2 \text{ for all } k.$$

Ex. $\{\frac{1}{n^2}\}$ is rapidly Cauchy in \mathbb{R} , but $\{\frac{1}{n}\}$ is not rapidly Cauchy in \mathbb{R} .

For the sequence $\left\{\frac{1}{n^2}\right\}$:

$$\left|\frac{1}{(k+1)^2} - \frac{1}{k^2}\right| = \frac{2k+1}{k^2(k+1)^2}.$$

To be rapidly Cauchy we need: $\sum_{k=1}^{\infty}\sqrt{\frac{2k+1}{k^2(k+1)^2}}=\sum_{k=1}^{\infty}\frac{\sqrt{2k+1}}{k(k+1)}$ to converge.

This does converge through the limit comparison test with the series

$$\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{2}}} < \infty.$$

So $\{\frac{1}{n^2}\}$ is rapidly Cauchy in \mathbb{R} .

For the sequence $\left\{\frac{1}{n}\right\}$:

$$\left| \frac{1}{k+1} - \frac{1}{k} \right| = \frac{1}{k(k+1)}$$
.

To be rapidly Cauchy we need: $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}}$ to converge.

But this series diverges by the limit comparison test with $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$.

Thus $\{\frac{1}{n}\}$ is not rapidly Cauchy in \mathbb{R} .

Notice that if $\{f_n\}$ is a sequence in X and we have a sequence of nonnegative numbers $\{a_k\}$ with

$$\|f_{k+1}-f_k\|\leq a_k \ \text{ for all } k \ \text{ then}$$

$$f_{n+k}-f_k=\sum_{j=n}^{n+k-1}(f_{j+1}-f_j) \ \text{ for all } n,k.$$

So

$$||f_{n+k} - f_k|| = ||\sum_{j=n}^{n+k-1} (f_{j+1} - f_j)|| \le \sum_{j=n}^{n+k-1} ||f_{j+1} - f_j||$$
$$\le \sum_{j=1}^{\infty} a_j \quad \text{for all } n, k.$$

Prop. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence.

Proof: Let $\{f_n\}$ be rapidly Cauchy and $\sum_{k=1}^{\infty} \epsilon_k < \infty$ for which

$$||f_{k+1} - f_k|| \le \epsilon_k^2$$
 for all k .

Thus:

$$||f_{n+k} - f_n|| = ||(f_{n+1} - f_n) + (f_{n+2} - f_{n+1}) + \dots + (f_{n+k} - f_{n+k-1})||$$

$$\leq ||f_{n+1} - f_n|| + \dots + ||f_{n+k} - f_{n+k-1}|| \leq \sum_{i=n}^{\infty} \epsilon_i^2 \text{ for all } n, k.$$

Since $\sum_{k=1}^{\infty} \epsilon_k$ converges, $\sum_{k=1}^{\infty} \epsilon_k^2$ converges (by the comparison test).

Thus given $\epsilon>0$ there exists an N such that $n\geq N$ implies

$$||f_{n+k} - f_n|| \le \left|\sum_{j=n}^{\infty} \epsilon_j^2\right| < \epsilon.$$

Thus $\{f_n\}$ is Cauchy.

Now assume $\{f_n\}$ is Cauchy.

We can always find an increasing sequence of $\{n_k\}$ such that

$$||f_{n_{k+1}} - f_{n_k}|| < (\frac{1}{2})^k$$
 for all k .

Thus $\{f_{n_k}\}$ is rapidly Cauchy because $\sum_{k=1}^{\infty}(\frac{1}{\sqrt{2}})^k$ converges because it's a geometric series with r<1.

Theorem: Let E be a measurable set and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the $L^p(E)$ norm and pointwise a.e. on E to a function in $L^p(E)$.

Proof at end of this section.

The Riesz-Fischer Theorem: Let E be a measurable set and $1 \le p \le \infty$. Then $L^p(E)$ is a Banach space. Moreover if $f_n \to f$ in $L^p(E)$, a subsequence of $\{f_n\}$ converges pointwise a.e. on E to f.

Proof: Let $\{f_n\}$ be a Cauchy sequence in $L^p(E)$. Thus there is a subsequence $\{f_{n_k}\}$ that is rapidly Cauchy.

The previous theorem says that $f_{n_k} \to f$ in $L^p(E)$ and converges to f a.e. on E. Since a Cauchy sequence converges if it has a convergent subsequence, $f_n \to f$ in $L^p(E)$.

Ex. Pointwise convergence does not guarantee convergence in $L^p(E)$.

Let
$$f_n(x) = n$$
 if $0 < x < \frac{1}{n}$

$$= 0 \text{ if } \frac{1}{n} \le x \le 1.$$

Then $f_n \in L^p(0,1)$ for all n and $f_n(x) \to f(x) = 0$ pointwise on (0,1) but $\{f_n\}$ is not a Cauchy sequence in $L^p(0,1)$ and hence does not converge in $L^p(0,1)$.

For example in $L^1(0,1)$:

$$||f_n - f_m||_1 = \int_0^{\frac{1}{m}} (m - n) + \int_{\frac{1}{m}}^{\frac{1}{n}} n = 2 - \frac{2n}{m}$$
; for $m > n$

Which doesn't go to 0 as $n, m \to \infty$.

Ex. Convergence in $L^p(E)$, $1 \le p < \infty$, does not guarantee pointwise convergence a.e. on E.

Let
$$f_1 = \chi_{[0,1]}$$
, $f_2 = \chi_{[0,\frac{1}{2}]}$, $f_3 = \chi_{[\frac{1}{2},1]}$, $f_4 = \chi_{[0,\frac{1}{4}]}$,
$$f_5 = \chi_{[\frac{1}{4'2}]}$$
, $f_6 = \chi_{[\frac{1}{2'4}]}$, $f_7 = \chi_{[\frac{3}{4'}1]}$, $f_8 = \chi_{[0,\frac{1}{8}]}$, ...

 $f_n \to 0$ in $L^p(E)$ but $\{f_n(x)\}$ does not converge pointwise for any $x \in [0,1]$.

However, we do have the following theorem:

Theorem: Let E be a measurable set and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to $f \in L^p(E)$ then $f_n \to f$ in $L^p(E)$ if and only if $\lim_{n \to \infty} \int_E |f_n|^p = \int_E |f|^p$.

Proof: By excising a set of measure 0 we can assume $f_n \to f$ pointwise on E.

From Minkowski's inequality (i.e. triangle inequality for $L^p(E)$)

$$\|f_n\|_p \le \|f_n - f\|_p + \|f\|_p$$
 So
$$\|f_n\|_p - \|f\|_p \le \|f_n - f\|_p.$$

So if
$$f_n \to f$$
 in $L^p(E)$ then $\lim_{n \to \infty} \int_E |f_n|^p = \int_E |f|^p$.

Now let's assume $\lim_{n\to\infty}\int_E |f_n|^p = \int_E |f|^p$.

Define $\varphi(t) = |t|^p$ for all t.

Since $\varphi''(t) \geq 0$ for $t \neq 0$, φ is convex. Thus

$$\varphi(\frac{a+b}{2}) \leq \frac{\varphi(a)+\varphi(b)}{2} \ \text{ for all } a,b.$$

Thus we have:

$$0 \le \frac{|a|^p + |b|^p}{2} - \left| \frac{a - b}{2} \right|^p \quad \text{for all } a, b.$$

Define
$$h_n(x) = \frac{\left|f_n(x)\right|^p + \left|f(x)\right|^p}{2} - \left|\frac{f_n(x) - f(x)}{2}\right|^p$$
 for all $x \in E$.

Since $f_n \to f$ pointwise on E; $h_n \to |f|^p$ pointwise on E and $h_n(x) \ge 0$.

By Fatou's lemma:
$$\int_{E} |f|^{p} \leq \liminf \int_{E} h_{n}$$

$$= \liminf \int_{E} \left(\frac{|f_{n}(x)|^{p} + |f(x)|^{p}}{2} - \left| \frac{f_{n}(x) - f(x)}{2} \right|^{p} \right)$$

$$= \int_{E} |f|^{p} - \limsup \int_{E} \left| \frac{f_{n}(x) - f(x)}{2} \right|^{p}$$

since $\lim_{n\to\infty} \int_E |f_n|^p = \int_E |f|^p$.

Thus
$$\limsup_{E} \left| \frac{f_n(x) - f(x)}{2} \right|^p \le 0.$$

So
$$\lim_{n\to\infty}\int_E |f_n-f|^p=0$$
 and $f_n\to f$ in $L^p(E)$.

Notice that in our example of $f_n \to f$ pointwise, but not in $L^p(0,1)$,

$$\lim_{n \to \infty} \int_0^1 |f_n|^p \neq \int_0^1 |f|^p .$$

The Borel-Cantelli Lemma says that if $\{E_k\}_1^\infty$ is a countable collection of measurable sets with $\sum_{k=1}^\infty m(E_k) < \infty$ then almost all $x \in \mathbb{R}$ belong to at most finitely many E's.

Thus there is a set E_0 with $m(E_0)=0$ and if $x\in E{\sim}E_0$ then there is some K(x) such that if $k\geq K(x)$ then

$$|f_{k+1}(x) - f_k(x)| \le \epsilon_k$$
.

Let $x \in E \sim E_0$. Then we have:

$$|f_{n+k}(x) - f_n(x)| \le \sum_{j=n}^{n+k-1} |f_{j+1}(x) - f_j(x)|$$

$$\le \sum_{j=n}^{\infty} \epsilon_j \; ; \quad \text{for all } n \ge K(x) \text{ and all } k.$$

Since $\sum_{j=1}^{\infty} \epsilon_j$ converges, the sequence of real numbers $\{f_k(x)\}$ is Cauchy.

Since the real numbers are complete: $f_k(x) \to f(x)$, a real number.

Define f(x) = 0 on E_0 . Thus f is defined on E.

Since
$$||f_{k+1} - f_k||_p \le \epsilon_k^2$$
 for all k
$$||f_{n+k} - f_k||_p \le \sum_{j=n}^\infty \epsilon_j^2$$
 or equivalently:
$$\int_{\mathbb{R}} |f_{n+k} - f_n|^p \le (\sum_{j=n}^\infty \epsilon_j^2)^p$$
 for all n, k .

Since $f_n \to f$ pointwise a.e. on E , take the limit as $k \to \infty$. By Fatou's lemma we get:

$$\int_{E} |f - f_n|^p \le \liminf \int_{E} |f_{n+k} - f_n|^p \le (\sum_{j=n}^{\infty} \epsilon_j^2)^p \quad \text{for all } n.$$

Since $\sum_{k=1}^{\infty} \epsilon_k^2$ converges we have $\lim_{n \to \infty} \sum_{j=n}^{\infty} \epsilon_n^2 = 0$.

Thus we have:

$$\lim_{n\to\infty}\int_E|f-f_n|^p=0\ \text{ and } f_n\to f\text{ in }L^p(E).$$

Theorem: Let E be a measurable set and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the $L^p(E)$ norm and pointwise a.e. on E to a function in $L^p(E)$.

Proof: Assume $1 \le p < \infty$ ($p = \infty$ is left as an exercise).

Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$.

By possibly excising a set of measure 0 we can assume that the $f_n{}^\prime s$ are real valued.

Choose $\sum_{k=1}^{\infty} \epsilon_k$ such that:

$$||f_{k+1} - f_k||_p \le \epsilon_k^2$$
 for all k .

Thus $\int_E |f_{k+1} - f_k|^p \le \epsilon_k^{2p}$ for all k.

Fix $k \in \mathbb{Z}^+$.

$$|f_{k+1}(x) - f_k(x)| \ge \epsilon_k$$
 if and only if $|f_{k+1}(x) - f_k(x)|^p \ge \epsilon_k^p$.

By Chebychev's inequality:

$$m\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \epsilon_k\} = m\{x \in E \mid |f_{k+1}(x) - f_k(x)|^p \ge \epsilon_k^p\}$$

$$\le \frac{1}{\epsilon_k^p} \int_E |f_{k+1}(x) - f_k(x)|^p$$

$$\le \epsilon_k^p.$$

Since $p \geq 1$, $\sum_{1}^{\infty} \epsilon_{k}^{p}$ converges.

Let
$$E_k = \{ x \in E | |f_{k+1}(x) - f_k(x)| \ge \epsilon_k \}.$$

Since $\sum_{1}^{\infty} \epsilon_{k}^{p}$ converges, $\sum_{k=1}^{\infty} m(E_{k})$ converges.