The Fundamental Theorem of Calculus

We saw earlier that if f is a continuous function on [a, b] then

[ Diffuf = Avnf (b) = Avyf (@)
1

where Diffyf(x) = L&D g Ay, f0) = 2 [ .

Since f is continuous:
. b .. b . . .
,}L%L fa Diffn.f = fa f' if the limit exists and

Jim (Avy f (b) — Avpf(a)) = f(b) — f ().

So we get the fundamental theorem of Calculus:

[P =fb) - f@.

The question is, is this statement still true even if f (x) is not differentiable
everywhere on (a, b)? If not, when is it true?



Theorem: Let f be absolutely continuous on the closed, bounded interval [a, b].
Then f is differentiable a.e. on [a, b] and

2 =fb) - f@.

Proof: Since f is absolutely continuous, it is the difference of two increasing
absolutely continuous function on [a, b].

Therefore, by Lebesgue’s theorem f is differentiable a.e. on (a, b).

} converges pointwise a.e. on (a, b) to f.

Thus {lef%f} = {

In addition, since f is absolutely continuous, {Difflf} is uniformly integrable

over [a, b].

Since {Difflf} is uniformly integrable over [a, b] and Dif f1f — f'
n n
pointwise a.e. on (a, b), the Vitali Convergence Theorem says f' is integrable and
. b . b, . b g
lim f; Diffof = J; lim Diffsf =[] "
From first year Calculus we know that if f is continuous then:

b
lim (Avlf(b) —Avlf(a)> = lim [ Diffar

f®) = f@=[.f"



Def. f is the indefinite integral of g over [a, b] if g is Lebesgue integrable over
[a,b]and f(x) = f(a) + f;g for x € [a, b].

Theorem: A function f on a closed, bounded interval [a, b] is absolutely
continuous on [a, b] if and only if it is an indefinite integral over [a, b].

Proof: Suppose f is absolutely continuous on [a, b].

Then f is absolutely continuous over [a, x], for x € [a, b].
By the previous theorem: f(x) = f(a) + fz f'.

Thus f is an indefinite integral over [a, b].

Now assume f is an indefinite integral over [a, b].

Given disjoint open intervals {(ak, bk)}}::l et B = Uzzl(ak, bk).
Thus we have:
b b
SRl B0 — F(a0l = Sier | [P g1 < Shey [2¥91 = J, 19l
Let € > 0.

Since g is integrable over [a, b], we know thereisa § > 0 such that

fE gl < €eIfE € [a,b] and m(E) < 6.

Thus f is absolutely continuous on [a, b].



Lemma: Let f be integrable over the closed, bounded interval [a, b]. Then
f(x) = 0a.e.on [a,b] ifand only if f;lzf = 0 forall [x{,x,] E (a, b).

Proof: If f(x) = 0 a.e. on [a, b] then clearly fxxlzf = 0 forall [x1,x,] € (a, b).

Now suppose f;zf = 0 forall [x{,x5] € (a, b).
1

Let’s first show that fE f = 0 for all measurable sets E € (a, b).

This is true for any open sets (because it is the countable disjoint union of open

intervals) and Gg sets (countable intersections of open sets), since any G5 set can
be represented by the intersection of a countable descending collection of open
sets.

Every measurable subset E of [a, b] is of the form G~E,, where G is a Gg
subset of (a, b) and m(E,) = O.

Thus we have:
Jg F+ 1 f=1; f=0and[, f=0,sincem(Eo) = 0.

Thus [ f = O for all measurable sets E € (a, b).

Now define E* = {x € [a,b]| f(x) =0}, E~ = {x € [a,b]| f(x) < O}.
[ ft=luf=0 and [/f~=[_f=0.

Thus f* =0ae.onEYandf~ = 0ae.onE".

Hence f = 0 a.e.on [a, b].



Theorem: Let f be integrable over the closed, bounded interval [a, b]. Then

% [f; f1] = f(x) foralmostall x € [a, b].

Proof: Let F(x) = f:f forx € [a, b].

F is absolutely continuous on [a, b].
Thus F is differentiable a.e. on [a, b] and F' is integrable.

To show that F' — f = 0 a.e. on [a, b] we just need to show that

f;lz[F' — f] = 0 forall [xq,x,] E (a,b) (by the previous lemma).

Since F is absolutely continuous we know f;lz F' = F(x,) — F(xy).

So
LlIF = f1= [ F = [ f =F() = Fx) = [7f
=L f-Lfr-Lif=0

So % [f;cf] = f(x) for almost all x € [a, b].



Ex. Let f be of bounded variation on [a, b] and define v(x) = TV(f[a,x]) for
all x € [a, b]. Show that |[f'| < v’ a.e.on [a, b] and f:|f’| < TV(f).

Show this is an equality if f is absolutely continuous.

Take a partition P = {xq, x5}, X1,X5 € [a, b]. Then
|f (x2) — fx)| =V(f,P) < TV(f[xl,xz])
= TV (fiara)) = TV (flaxa))-

So we have:

f Ge2)=f @)l TV laxp) =TV (flap)) _ v(x2)=v(x)
Xy—Xq - Xy—Xq Xy—X1

Since f is of bounded variation, f' exists a.e. on [a, b]. It also means that

TV(f[a}x]) = v(x) is absolutely continuous and so V' exists a.e. on [a, b].

Thus

lim |f (x2)—f(x1)| < lim v(xz)—v(xl)'
Xp—Xq X2—X1 Xp—X1 X27X1

So where these limits exist (a.e. on [a, b]) and

fl<v.

b b
Thus we have: fa If'] < fa v’ = v(b) — v(a) because v is absolutely

continuous.



Now v(b) —v(a) = TV (f) on [a, b] so
[ 11TV,

Now if f is absolutely continuous on [a, b] then

[2f' = f() = f(x1) for (x1,%) € (a,b).

f has bounded variation so for any partition P of [a, D]

V(f,P) = Zios If (be) = fa)l = Zpoa | [ F
<YL LU =1 I

Thuswe have: TV (f) < f; 1f'].

b
However, in the first part we showed TV (f) = fa |f’|

b
Thus if f is absolutely continuous TV(f) = fa |f’|



