Absolutely Continuous Functions

Def. A real valued function f on a closed interval [a, b] is said to be absolutely
continuous on [a, b] if for each € > 0, thereisa § > 0 such that for every
disjoint collection {(ay, by )}ji=1 of open intervalsin (a, b) if

k=1lbx — ar| <& then ¥i_,|f (br) — far)| <e.

Notice that if the finite collection is a single set we get the definition for uniform
continuity. Thus absolutely continuous implies uniformly continuous (but not the
other way around).

Ex. The Cantor function ¢ is increasing and continuous on [0,1] (and hence

uniformly continuous), but it is not absolutely continuous.

In the nth stage of construction the Cantor set is a disjoint collection
{[ck, dk]}ﬁzi of 2™ subintervals of [0,1] each of length 37™.

For example A, = [0, %] U [ ] [ ] U [§

¢ is constant on each of the intervals that comprise the complement in [0,1] of
this collection of intervals.

Since ¢ is increasingand @ (1) — @(0) = 1;
n 2. —on
Yhzt |y — el = (3) while k=1 lo(dr) — p(cl = 1.
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(Since @ takes on the values on the 2™ — 1 open
p

intervals).

Butif € = 1 thereisno & > 0 where if Z;‘;%ﬂdk — ¢| < 6 then

YR=2"f(dp) — flep)| < €.



It’s not hard to show that linear combinations of absolutely continuous functions
are also absolutely continuous, however, compositions of absolutely continuous
functions need not be absolutely continuous.

Prop. If f is Lipschitz on a closed, bounded interval [a, b] then it is absolutely
continuous.

Proof: Let ¢ > 0 be a Lipschitz constant for f on [a, b]. So

If(w) — f(v)| < clu—v| forallu,v € [a,b].

If we just take § = S then

€
;(l=1|bk — akl <éd =E = CZZ:llbk —akl < €.

But since f is Lipschitz with constant c:

Zzllf(bk) _f(ak)l =< CZ}’(lzllbk - akl <E.

Hence f is absolutely continuous on [a, b].

Note: there are functions that are absolutely continuous but are not Lipschitz. For
example f(x) =+x for0 < x < 1.



Theorem: Let the function f be absolutely continuous on the closed, bounded

interval [a, b]. Then f is the difference of increasing absolutely continuous
functions and hence of bounded variation.

Proof: First let’s show that f is of bounded variation.

Let & correspondtoe = 1.

Let P be a partition of [a, b] into N closed intervals {[cy, dg ]}X—; each of
length less than §.

Since |dy — cx| < 6 foreach [c, di ], any partition {8, B1, .-, Bm} of
[c, die] will have:  XTL.|f(B;) — f(Bj-1)| < € =1, thatis

TV (ficpa,) < 1for1 <k <N.

By the additivity of the total variation of disjoint intervals:

N
TV(f) = Z TV (ficpan) < N.
k=1

So f is of bounded variation.

Since f is of bounded variation we can write:

fG) = [fC) + TV(fiax)] = TV (fiax)-

To show that f is the difference of absolutely continuous functions we just need
to show that TV (f[q,x]) is absolutely continuous.



Since f is absolutely continuous given any € > 0 choose § > 0 such that if
€
k=1ldx — il <& then Xp_4|f(dy) — fc)| < 5

Let Py, be a partition of [cg, di] for 1 < k < n.

: €
Since Y.p—1ldr — cx| < & wehave: Y7_, V(f[ck,dk]' Pk) <3.
Now taking the supremum:

€
z:;cl=1 TV(f[Ck'dk]) = > < €.

since TV (fiaw)) = TV (fiag) = TV (fluw)) fora<u<v<b

TV(f[a,dk]) - TV(f[a,Ck]) = TV(f [Ck»dk])'

Henceif Y.p—q|dr — x| <&

ret | TV (fiaa) = TV (fiac)l < €.

So TV (f{a,x]) is absolutely continuous.

Note: Lipschitz—=  absolutely continuous=— bounded variation.

Ex. f(x) = +/x is absolutely continuous on [0,1], but not Lipschitz since f'(x)
is not bounded on [0,1].

Ex. @(x), the Cantor function is not absolutely continuous on [0,1] but has
bounded variation since it’s an increasing function.



Ex. Prove that f (x) = x? is absolutely continuous on [—1,1].

f'(x) =2xsoon[—=1,1], |f'(x)| < 2. Thus f(x) is Lipschitz

(with ¢ = 2) and thus absolutely continuous.

Ex. Prove f(x) = xcos (%) if0<x<1
=0 ifx=0

is not absolutely continuous on [0,1].

As we saw earlier, f (x) is not of bounded variation on [0,1], thus it can’t be
absolutely continuous.

Theorem: Let f be continuous on the closed, bounded interval [a, b]. Then f is
absolutely continuous on [a, b] if and only if the family of divided difference
functions {Dif fnf }o<n<1 is uniformly integrable over [a, b].

Proof: We will prove that if f is absolutely continuous on [a, b] then

{Dif f1.f Yo<n<1 is uniformly integrable over [a, b] (this is the statement that
we will use later).

From the preceding theorem we know that since f is absolutely continuous on

[a, b] it can be written as the difference of two increasing absolutely continuous
functions.

Thus we can assume that f is increasing.



To prove uniform integrability of {Dif f1, f }o<n<1 We must show given any
€ > 0 thereisad > 0 such that for each measurable subset E of (a, b)

fE Diffu,f <eift m(E) <dand0 < h < 1.
Earlier we had a theorem that said given a measurable set E there exists a Gg set
G withE € G andm(G~E) = 0.
But every G is the intersection of a descending sequence of open sets.

In addition, every open set is the disjoint union of a countable collection of open
intervals.

Therefore every open set is the union of an ascending sequence of open sets,
each of which is the union of a finite disjoint collection of open intervals.

Thus by the continuity of integration we just need to show:

fE Diffuf <e if m(E) <§and0 < h <1, where E = (U}=(ck, dy).

Choose & > 0 such that:

i=1ldi — ci| < & implies Yp—q|f(dr) — f(cp)| < %
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Lett = x — v; lett =x—u

= SN+ ) = £t +w)]

== g g® = ft+v) = £t +w).

If {[ck, di]}i=1 is disjoint then:

[, Diffaf == fit g(8); where E = Ui (ci,di)
and g(t) = YRq1lf(dr +t) — f(cp + t)], for0 <t < 1.

If Ypeqldr —cil <6 thenfor0 <t <1, YP_{|(dp+1t)—(cpx +t)| <&

and therefore g(t) < % :

Thus: [, Diffuf =3 [ g(8) <%.

Hence fE Diffnf <§ if m(E) <6,

where E = U} (¢k,dx)and 0 < h < 1.



