Differentiability of Monotonic Functions

Def. A closed interval [c, d] is said to be nondegenerate if c < d.

Def. A collection F of closed, bounded, nondegenerate intervals is called a Vitali
covering of a set E if for each point x € E and € > 0, there is an interval
I € F that contains x and has [(]) < €.

Ex. A Vitali covering of [0,1].

Let R = {ry, 1y, 13, ... } be the set of rational numbersin [0,1].
1 1
Let Ik,n = [Tk — ;,Tk +Z]

Then F = {Ikn}ﬁzzio, is a Vitali covering of [0,1].

The Vitali Covering Lemma: Let E be a set of finite outer measure and F a
collection of closed, bounded, nondegenerate intervals that is a Vitali covering of
E. Then for each € > 0 there is a finite disjoint subcollection {I} }}:—; of F for
whichm*(E~ U=, Ix) < €.



Let x be a point of the domain of a real valued function f.

Def. We define the upper and lower derivative of f at x by

f(x+t)—f(x)]

Df(x) = lim[ sup "

h=0"o<|t|<h
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Notice that Df (x) = Df (x).

If Df (x) = Df(x) and is finite, we say f is differentiable at x and define

f'(x) to be the common value.

Ex. Let f(x) =0 ifx€EQ

=1 ifx &Q.
= : f(O+t)—£(0) . f®
Df(0) = lim[ su = lim| sup —=| = o0
(0 h_’0[0<|t|2h t | h-0 _0<|t|psh t ]

it ose fO+O=FO. [ .o f®] _
Df(0) = %l—r%[oéﬁléh i _0<1|rtllfsh 2

since Df(0) #= Df(0), f(x) does not have a derivative at x = 0.

If f(x) is continuous on [a, b], and differentiable on (a, b), the Mean Value
Theorem tells us that thereisa ¢ € (a, b) such that

f(b)_f(a) _
=2 = (o).

If we know that f'(x) = a foralla < x < b then

f(b)-f(a)
b—a

=f'(c)=a or f(b)—f(a)=alb—a).



We have the following generalization for increasing functions.

Lemma: Let f be an increasing function on the closed, bounded interval [a, b].
Then foreach @ > 0

m*{x € (a,b)| Df () = a} <~ [f(b) — f(a)]
and m*{x € (a,b)| Df(x) = o} = 0.

Proof: Let @ > 0.

Define E, = {x € (a,b)| Df (x) = a}.

Choose a’ € (0, @).
Let F be a collection of closed, bounded intervals [c, d] contained in (a, b) for
which: f(d)—f(c)=a'(d - o).

Since Df (x) = a on E,, F isa Vitali covering of E,.

By the Vitali covering lemma there is a finite, disjoint subcollection {[ck, d]}je=1
of F for which

m*(Eq~ Uk=1[cr di]} < €.

Since E, € (Uk=1[ck, di]) U (Eg~ Uk=1[ck, di]) we have
m*(Eq) < Xg=1m"([c, di]) + m*(Eq~ Ug=y[ck, di])
< Lk=1(dp —cx) + €.



But F is the set of [¢, d] with f(d) — f(c) = a'(d — ¢). So

m*(Ea) < = [R1 (F(di) — f(cie))] + €.

However, f is increasing on [a, b] and {[ck, di |} =4 are disjoint so

Yi=1(f(di) = f(cr)) < f(b) = f(a).

Thus for eache > 0 and a’ € (0, a)

m*(Ex) < = [f(b) - f(@)] +e.

Hence m*{x € (a,b)| Df (x) 2 a} <= [f(b) — f(a)].

Foreach n € Z*,{x € (a,b)| Df (x) = o0} € E,; therefore

m*{x € (a,b)| Df (x) = o0} < m*(En) < = (f(b) - f(a)).

Thus  m*{x € (a,b)| Df(x) = o} = 0.

Lebesgue’s Theorem: If the function f is monotonic on the open interval (a, b),

then it is differentiable almost everywhere on (a, b).

Proof: Assume f is increasing.

Also assume (a, b) is bounded. Ifit’s not, express it as the union of ascending

open, bounded intervals and use the continuity of measure.



The set of points where D f (x) > Df (x) is
Ua,ﬁe@ Ea,ﬁ = Ua,ﬁe@{x € (a,b)| Ef(x) >a>p>Df(x)}.

By countable subadditivity of outer measure we only need to prove the assertion
foreach E g.

Fixa, 3 € Qwitha >, andletE = E, 5.

Let € > 0.

Choose an open set O for which: E € 0 € (a,b) and m*(0) < m*(E) + €.

Let F be the collection of closed intervals [¢, d] S O with

fd)—f(c) <B(d—o).
Since f > Df(x) on E, F is a Vitali covering of E.

The Vitali covering lemma says there is a finite disjoint subcollection
{[ck, di]}i=1 of F for which

m*(E~ Ujzqlck, di]} < €.

Since [, di] € O foralll <k <n
k=11 (di) = f(c)] < B X=1[(di) — (cx)] < pm*(0)
< B(m*(E) + ).

From the preceding lemma applied to [cy, di]:

m*(E N (e die)) < 2 [F(di) — f )]



Since m*(E~ Uj=1[ck, dk]} < €, and
E=En Ugzqlck, di]) U (E~Ukz1lck, dk]), we have:

m*(E) < Zi_ym*(E 0 (e di)) + € S = SRy [f(di) — fc)] + €.

Now since Yp—1[f(dr) — f(ck)] < B(M*(E) + €) we have:
m*(E) < 2 ¥ia[f(de) — fe)] + e

ng*(E) +§+€ foralle > 0.

Therefore since 0 < m*(E) < o and g <1

m*(E) = 0.

Let f be integrable over the closed, bounded interval [a, b]. Extend f to take on
the value f(b) on (b, b + 1].

For 0 < h < 1 define the divided difference function, Dif f;, f and the average
value function Avy f on [a, b] by:

Diffuf(0) = LEVTE ooy Avf() =7 [,

(Recall from first year calculus that the average value of a function y = f(x)

b
over an interval [a, b] is given by:  f,. = ﬁfa f(x)dx).



Notice thatfora < u < v < b:

. h)—
Ji Diffaf = f; FEE

= [0 fCe+B) = [F F ()]

Nowletw = x + h

=[OV Fw) = [0 F (o]

‘ P

v+h

= U= 1T
= Avyf (v) — Avpf ().

This looks a lot like fjf’(x)dx = f(v) — f(u), the fundamental theorem of
Calculus.



Corollary: Let f be an increasing function on the closed, bounded interval [a, b].
Then f'(x) is integrable over [a, b] and

[P < f) - f(a).

Proof: We can extend f to be increasingon [a, b + 1] by f(x) = f(b) for
b<x<b+1.

fx+h)-f(x) i
h

Since f is increasing, it is measurable and therefore

measurable.
Lebesgue’s theorem says f~ exists a.e. on (a, b), thus {Dif f1f(x)}isa
n

sequence of nonnegative measurable functions that converges pointwise a.e. on

[a,b]to f".

By Fatou’s lemma:

[, f' < liminf [} Diff1f (x).

Since fj Diffuf = Avyf(v) — Av, f(u) we have:
f Diff1f () = Avsf (b) ~ Avsf (a)

1

SEval LY o
= f(b _Vlnf;Jr%fSincef(x)=f(b)forb<be+1.

so: [7 DIff1f(0) = f(6) — 1 [ f < f(8) — f (@),

since f is increasing.



Thus we have:  lim sup [ % Diff%f(x)] < f(b) - f(a).

Hence:
fo 1 < lim inf| 7 Diffaf (0]
< lim sup| [}’ Dif f1f ()| < fB) — f(@.

Ex. The Cantor function, ¢, is increasing and continuous on [0,1]. It also has the

property that (1) = 1, ¢(0) = 0, and ¢'(x) = 0 a.e.on [0,1].
Thus fol @' (x) =0, bute(1l) — @(0) =1, so

folq)’(x) < () — ¢(0).

Ex. Notice that the corollary to Lebesgue’s theorem says that if f is increasing on
[a, b] then f' is integrable on [a, b]. If f is not increasing on [a, b], f' may not
be integrable even if f is continuous on [a, b] and differentiable at every point
but 1. For example:

1
f(x)=x251n; 0<x<1
=0 x=0.

1
Has a derivative everywhere but x = 0, however, fo |f'| is not finite so f is

not Lebesgue integrable.



