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                        Differentiability of Monotonic Functions 

 

Def.  A closed interval [𝑐, 𝑑] is said to be nondegenerate if 𝑐 < 𝑑. 

Def.  A collection 𝐹 of closed, bounded, nondegenerate intervals is called a Vitali 

covering of a set 𝑬 if for each point 𝑥 ∈ 𝐸 and 𝜖 > 0, there is an interval       

𝐼 ∈ 𝐹 that contains 𝑥 and has 𝑙(𝐼) < 𝜖. 

 

Ex. A Vitali covering of [0,1]. 

Let 𝑅 = {𝑟1, 𝑟2, 𝑟3, … } be the set of rational numbers in [0,1]. 

Let  𝐼𝑘,𝑛 = [𝑟𝑘 −
1

𝑛
, 𝑟𝑘 +

1

𝑛
]. 

Then 𝐹 = {𝐼𝑘,𝑛}𝑘,𝑛=1
𝑘,𝑛=∞, is a Vitali covering of [0,1]. 

 

 

The Vitali Covering Lemma:  Let 𝐸 be a set of finite outer measure and 𝐹 a 
collection of closed, bounded, nondegenerate intervals that is a Vitali covering of 

𝐸.  Then for each 𝜖 > 0  there is a finite disjoint subcollection {𝐼𝑘}𝑘=1
𝑛  of 𝐹 for 

which 𝑚∗(𝐸~ ⋃ 𝐼𝑘) < 𝜖𝑛
𝑘=1 . 
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Let 𝑥 be a point of the domain of a real valued function 𝑓. 

Def.  We define the upper and lower derivative of 𝒇 at 𝑥 by 

            𝐷̅𝑓(𝑥) = lim
ℎ→0

[ sup
0<|𝑡|≤ℎ

𝑓(𝑥+𝑡)−𝑓(𝑥)

𝑡
]     

           𝐷 𝑓(𝑥) = lim
ℎ→0

[ inf
0<|𝑡|≤ℎ

𝑓(𝑥+𝑡)−𝑓(𝑥)

𝑡
].  

Notice that 𝐷̅𝑓(𝑥) ≥ 𝐷𝑓(𝑥). 

If 𝐷̅𝑓(𝑥) = 𝐷𝑓(𝑥) and is finite, we say 𝒇 is differentiable at 𝒙 and define 

𝑓′(𝑥) to be the common value. 

 

Ex.   Let     𝑓(𝑥) = 0     if 𝑥 ∈ ℚ            

                           = 1     if 𝑥 ∉ ℚ. 

        𝐷̅𝑓(0) = lim
ℎ→0

[ sup
0<|𝑡|≤ℎ

𝑓(0+𝑡)−𝑓(0)

𝑡
] = lim

ℎ→0
[ sup

0<|𝑡|≤ℎ

𝑓(𝑡)

𝑡
] = ∞  

        𝐷𝑓(0) = lim
ℎ→0

[ inf
0<|𝑡|≤ℎ

𝑓(0+𝑡)−𝑓(0)

𝑡
] = lim

ℎ→0
[ inf

0<|𝑡|≤ℎ

𝑓(𝑡)

𝑡
] = −∞. 

Since 𝐷̅𝑓(0) ≠ 𝐷𝑓(0), 𝑓(𝑥) does not have a derivative at 𝑥 = 0. 

 

If 𝑓(𝑥) is continuous on [𝑎, 𝑏], and differentiable on (𝑎, 𝑏), the Mean Value 

Theorem tells us that there is a 𝑐 ∈ (𝑎, 𝑏) such that  

                         
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝑐).  

    

If we know that 𝑓′(𝑥) ≥ 𝛼 for all 𝑎 < 𝑥 < 𝑏 then  

         
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝑐) ≥ 𝛼     or     𝑓(𝑏) − 𝑓(𝑎) ≥ 𝛼(𝑏 − 𝑎). 
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We have the following generalization for increasing functions. 

Lemma:  Let 𝑓 be an increasing function on the closed, bounded interval [𝑎, 𝑏].  

Then for each 𝛼 > 0 

                    𝑚∗{𝑥 ∈ (𝑎, 𝑏)| 𝐷̅𝑓(𝑥) ≥ 𝛼} ≤
1

𝛼
[𝑓(𝑏) − 𝑓(𝑎)] 

and              𝑚∗{𝑥 ∈ (𝑎, 𝑏)| 𝐷̅𝑓(𝑥) = ∞} = 0.     

 

Proof: Let 𝛼 > 0.   

Define 𝐸𝛼 = {𝑥 ∈ (𝑎, 𝑏)| 𝐷̅𝑓(𝑥) ≥ 𝛼}.    

 

Choose 𝛼′ ∈ (0, 𝛼). 

Let 𝐹 be a collection of closed, bounded intervals [𝑐, 𝑑] contained in (𝑎, 𝑏) for 

which:             𝑓(𝑑) − 𝑓(𝑐) ≥ 𝛼′(𝑑 − 𝑐).  

 

Since 𝐷̅𝑓(𝑥) ≥ 𝛼 on  𝐸𝛼,  𝐹 is a Vitali covering of 𝐸𝛼.  

 

By the Vitali covering lemma there is a finite, disjoint subcollection {[𝑐𝑘 , 𝑑𝑘]}𝑘=1
𝑛  

of 𝐹 for which  

                         𝑚∗(𝐸𝛼~ ⋃ [𝑐𝑘 , 𝑑𝑘]} < 𝜖𝑛
𝑘=1 . 

 

 

Since 𝐸𝛼 ⊆ (⋃ [𝑐𝑘 , 𝑑𝑘])𝑛
𝑘=1 ∪ (𝐸𝛼~ ⋃ [𝑐𝑘 , 𝑑𝑘])𝑛

𝑘=1  we have 

             𝑚∗(𝐸𝛼) ≤ ∑ 𝑚∗([𝑐𝑘 , 𝑑𝑘]) + 𝑚∗(𝑛
𝑘=1 𝐸𝛼~ ⋃ [𝑐𝑘 , 𝑑𝑘])𝑛

𝑘=1  

                            < ∑ (𝑑𝑘 − 𝑐𝑘) + 𝜖𝑛
𝑘=1 .  
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But 𝐹 is the set of [𝑐, 𝑑] with 𝑓(𝑑) − 𝑓(𝑐) ≥ 𝛼′(𝑑 − 𝑐).  So 

              𝑚∗(𝐸𝛼) ≤
1

𝛼′ [∑ (𝑓(𝑑𝑘) − 𝑓(𝑐𝑘))]𝑛
𝑘=1 + 𝜖.      

 

However, 𝑓 is increasing on [𝑎, 𝑏] and {[𝑐𝑘 , 𝑑𝑘]}𝑘=1
𝑛  are disjoint so 

                            ∑ (𝑓(𝑑𝑘) − 𝑓(𝑐𝑘))𝑛
𝑘=1 ≤ 𝑓(𝑏) − 𝑓(𝑎).  

 

Thus for each 𝜖 > 0 and 𝛼′ ∈ (0, 𝛼) 

              𝑚∗(𝐸𝛼) ≤
1

𝛼′ [𝑓(𝑏) − 𝑓(𝑎)] + 𝜖.       

 

Hence   𝑚∗{𝑥 ∈ (𝑎, 𝑏)| 𝐷̅𝑓(𝑥) ≥ 𝛼} ≤
1

𝛼
[𝑓(𝑏) − 𝑓(𝑎)].  

 

For each  𝑛 ∈ ℤ+, {𝑥 ∈ (𝑎, 𝑏)| 𝐷̅𝑓(𝑥) = ∞} ⊆ 𝐸𝑛;  therefore 

           𝑚∗{𝑥 ∈ (𝑎, 𝑏)| 𝐷̅𝑓(𝑥) = ∞} ≤ 𝑚∗(𝐸𝑛) ≤
1

𝑛
(𝑓(𝑏) − 𝑓(𝑎)).  

 

Thus      𝑚∗{𝑥 ∈ (𝑎, 𝑏)| 𝐷̅𝑓(𝑥) = ∞} = 0.     

 

 

Lebesgue’s Theorem:  If the function 𝑓 is monotonic on the open interval (𝑎, 𝑏), 

then it is differentiable almost everywhere on (𝑎, 𝑏). 

 

Proof:  Assume 𝑓 is increasing.   

Also assume (𝑎, 𝑏) is bounded.  If it’s not, express it as the union of ascending 

open, bounded intervals and use the continuity of measure.  
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The set of points where 𝐷̅𝑓(𝑥) > 𝐷𝑓(𝑥) is 

    ⋃ 𝐸𝛼,𝛽 =𝛼,𝛽∈ℚ ⋃ {𝑥 ∈ (𝑎, 𝑏)|  𝐷̅𝑓(𝑥) > 𝛼 > 𝛽 > 𝐷𝑓(𝑥)}𝛼,𝛽∈ℚ  . 

 

By countable subadditivity of outer measure we only need to prove the assertion 

for each 𝐸𝛼,𝛽.  

 

Fix 𝛼, 𝛽 ∈ ℚ with 𝛼 > 𝛽,  and let 𝐸 = 𝐸𝛼,𝛽. 

Let 𝜖 > 0. 

Choose an open set 𝑂 for which: 𝐸 ⊆ 𝑂 ⊆ (𝑎, 𝑏) and 𝑚∗(𝑂) < 𝑚∗(𝐸) + 𝜖.  

 

Let 𝐹 be the collection of closed intervals [𝑐, 𝑑] ⊆ 𝑂 with 

 𝑓(𝑑) − 𝑓(𝑐) < 𝛽(𝑑 − 𝑐).  

 

Since 𝛽 > 𝐷𝑓(𝑥) on 𝐸, 𝐹 is a Vitali covering of 𝐸. 

 

The Vitali covering lemma says there is a finite disjoint subcollection 

{[𝑐𝑘 , 𝑑𝑘]}𝑘=1
𝑛  of 𝐹 for which  

                         𝑚∗(𝐸~ ⋃ [𝑐𝑘 , 𝑑𝑘]} < 𝜖𝑛
𝑘=1 .  

 

Since [𝑐𝑘 , 𝑑𝑘] ⊆ 𝑂 for all 1 ≤ 𝑘 ≤ 𝑛 

    ∑ [𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)]𝑛
𝑘=1 < 𝛽 ∑ [(𝑑𝑘) − (𝑐𝑘)] ≤ 𝛽𝑚∗(𝑂)𝑛

𝑘=1    

                                             ≤ 𝛽(𝑚∗(𝐸) + 𝜖).  

 

From the preceding lemma applied to  [𝑐𝑘 , 𝑑𝑘]: 

                𝑚∗(𝐸 ∩ (𝑐𝑘 , 𝑑𝑘)) ≤
1

𝛼
[𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)].     
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Since  𝑚∗(𝐸~ ⋃ [𝑐𝑘 , 𝑑𝑘]} < 𝜖𝑛
𝑘=1 , and 

             𝐸 = 𝐸 ∩ (⋃ [𝑐𝑘 , 𝑑𝑘])𝑛
𝑘=1 ∪ (𝐸~ ⋃ [𝑐𝑘 , 𝑑𝑘]),𝑛

𝑘=1      we have: 

 

   𝑚∗(𝐸) < ∑ 𝑚∗(𝐸 ∩ (𝑐𝑘 , 𝑑𝑘)) + 𝜖 ≤
1

𝛼
∑ [𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)] + 𝜖𝑛

𝑘=1
𝑛
𝑘=1 . 

 

Now since   ∑ [𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)]𝑛
𝑘=1 ≤ 𝛽(𝑚∗(𝐸) + 𝜖)   we have: 

   𝑚∗(𝐸) ≤
1

𝛼
∑ [𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)] + 𝜖𝑛

𝑘=1       

                ≤
𝛽

𝛼
𝑚∗(𝐸) +

𝜖

𝛼
+ 𝜖     for all 𝜖 > 0.        

 

Therefore since 0 ≤ 𝑚∗(𝐸) < ∞  and  
𝛽

𝛼
< 1 

            𝑚∗(𝐸) = 0. 
 

 

 

Let 𝑓 be integrable over the closed, bounded interval [𝑎, 𝑏].  Extend 𝑓 to take on 

the value 𝑓(𝑏) on (𝑏, 𝑏 + 1].  

 

For 0 < ℎ ≤ 1 define the divided difference function, 𝐷𝑖𝑓𝑓ℎ𝑓 and the average 

value function 𝐴𝑣ℎ𝑓 on [𝑎, 𝑏] by: 

            𝑫𝒊𝒇𝒇𝒉𝒇(𝒙) =
𝒇(𝒙+𝒉)−𝒇(𝒙)

𝒉
    and    𝑨𝒗𝒉𝒇(𝒙) =

𝟏

𝒉
∫ 𝒇

𝒙+𝒉

𝒙
.       

 

(Recall from first year calculus that the average value of a function 𝑦 = 𝑓(𝑥) 

over an interval [𝑎, 𝑏] is given by:    𝑓𝑎𝑣𝑒 =
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
). 
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Notice that for 𝑎 ≤ 𝑢 < 𝑣 ≤ 𝑏: 

     ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 = ∫
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ

𝑣

𝑢

𝑣

𝑢
 

                         =
1

ℎ
[∫ 𝑓(𝑥 + ℎ) − ∫ 𝑓(𝑥)]

𝑣

𝑢

𝑣

𝑢
 

      Now let 𝑤 = 𝑥 + ℎ 

                         =
1

ℎ
[∫ 𝑓(𝑤) − ∫ 𝑓(𝑥)

𝑥=𝑣

𝑥=𝑢
]

𝑤=𝑣+ℎ

𝑤=𝑢+ℎ
 

 

 

 

 

 

 

                        

                          =
1

ℎ
[∫ 𝑓 − ∫ 𝑓]

𝑢+ℎ

𝑢

𝑣+ℎ

𝑣
 

                         = 𝐴𝑣ℎ𝑓(𝑣) − 𝐴𝑣ℎ𝑓(𝑢).  

 

This looks a lot like ∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑣) − 𝑓(𝑢)
𝑣

𝑢
, the fundamental theorem of 

Calculus. 

 

 

 

 

𝑦 = 𝑓(𝑥) 

𝑢              𝑢 + ℎ                                               𝑣              𝑣 + ℎ 
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Corollary: Let 𝑓 be an increasing function on the closed, bounded interval [𝑎, 𝑏]. 

Then 𝑓′(𝑥) is integrable over [𝑎, 𝑏] and  

                              ∫ 𝑓′ ≤ 𝑓(𝑏) − 𝑓(𝑎)
𝑏

𝑎
.  

 

Proof:  We can extend 𝑓 to be increasing on [𝑎, 𝑏 + 1] by 𝑓(𝑥) = 𝑓(𝑏) for 

𝑏 < 𝑥 ≤ 𝑏 + 1.   

Since 𝑓 is increasing, it is measurable and therefore  
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
  is 

measurable. 

Lebesgue’s theorem says 𝑓′ exists a.e. on (𝑎, 𝑏), thus {𝐷𝑖𝑓𝑓1

𝑛

𝑓(𝑥)} is a 

sequence of nonnegative measurable functions that converges pointwise a.e. on 

[𝑎, 𝑏] to 𝑓′. 

 

By Fatou’s lemma: 

                        ∫ 𝑓′ ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝐷𝑖𝑓𝑓1

𝑛

𝑓(𝑥)
𝑏

𝑎

𝑏

𝑎
 .  

 

Since ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 = 𝐴𝑣ℎ𝑓(𝑣) − 𝐴𝑣ℎ𝑓(𝑢)
𝑣

𝑢
   we have: 

  ∫ 𝐷𝑖𝑓𝑓1

𝑛

𝑓(𝑥)
𝑏

𝑎
= 𝐴𝑣1

𝑛

𝑓(𝑏) − 𝐴𝑣1

𝑛

𝑓(𝑎)    

                   =
1

1
𝑛⁄

∫ 𝑓
𝑏+

1

𝑛
𝑏

−
1

1
𝑛⁄

∫ 𝑓
𝑎+

1

𝑛
𝑎

 

                   = 𝑓(𝑏) −
1

1
𝑛⁄

∫ 𝑓
𝑎+

1
𝑛

𝑎
 since 𝑓(𝑥) = 𝑓(𝑏) for 𝑏 < 𝑥 ≤ 𝑏 + 1. 

So:   ∫ 𝐷𝑖𝑓𝑓1

𝑛

𝑓(𝑥) = 𝑓(𝑏) −
1

1
𝑛⁄

∫ 𝑓 ≤ 𝑓(𝑏) − 𝑓(𝑎).
𝑎+

1

𝑛
𝑎

     
𝑏

𝑎
 

since 𝑓 is increasing.        
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Thus we have:          lim
𝑛→∞

sup [∫ 𝐷𝑖𝑓𝑓1

𝑛

𝑓(𝑥)
𝑏

𝑎
] ≤ 𝑓(𝑏) − 𝑓(𝑎). 

 

Hence: 

∫ 𝑓′ ≤ lim
𝑛→∞

inf [∫ 𝐷𝑖𝑓𝑓1

𝑛

𝑓(𝑥)
𝑏

𝑎
]

𝑏

𝑎
                                                                           

           ≤ lim
𝑛→∞

sup [∫ 𝐷𝑖𝑓𝑓1
𝑛

𝑓(𝑥)
𝑏

𝑎
] ≤ 𝑓(𝑏) − 𝑓(𝑎).  

 

 

Ex.  The Cantor function, 𝜑, is increasing and continuous on [0,1].  It also has the 

property that 𝜑(1) = 1, 𝜑(0) = 0, and 𝜑′(𝑥) = 0 a.e. on [0,1]. 

Thus  ∫ 𝜑′(𝑥) = 0
1

0
,  but 𝜑(1) −  𝜑(0) = 1,  so 

             ∫ 𝜑′(𝑥) < 𝜑(1) −  𝜑(0)
1

0
. 

 

 

Ex.  Notice that the corollary to Lebesgue’s theorem says that if 𝑓 is increasing on 

[𝑎, 𝑏] then 𝑓′ is integrable on [𝑎, 𝑏].  If 𝑓 is not increasing on [𝑎, 𝑏], 𝑓′ may not 

be integrable even if 𝑓 is continuous on [𝑎, 𝑏] and differentiable at every point 

but 1.  For example: 

                   𝑓(𝑥) = 𝑥2𝑠𝑖𝑛
1

𝑥2      0 < 𝑥 ≤ 1 

                             = 0                    𝑥 = 0 . 

Has a derivative everywhere but 𝑥 = 0, however, ∫ |𝑓′|
1

0
 is not finite so 𝑓′ is 

not Lebesgue integrable. 


