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The Vitali Convergence Theorem  

 

Lemma:  Let 𝐸 be a set of finite measure and 𝛿 > 0. Then 𝐸 is the disjoint  

      union of a finite collection of sets, each of which has measure less than 𝛿. 

 

Proof:  By the continuity of measure,  

                       lim
𝑛→∞

𝑚(𝐸~[−𝑛, 𝑛]) = 𝑚(𝜙) = 0      

            since if 𝐸~[−𝑛, 𝑛] = 𝐸 ∩ [−𝑛, 𝑛]𝑐 = 𝐸𝑛                                                     

            then 𝐸𝑛+1 ⊆ 𝐸𝑛 and 𝑚(𝐸) < ∞.  

 

           Choose 𝑛0 ∈ ℤ+ for which, 𝑚(𝐸~[−𝑛0, 𝑛0]) < 𝛿. 

 

           Now choose a partition of [−𝑛0, 𝑛0] fine enough so 𝐸 ∩ [−𝑛0, 𝑛0]   

             is the disjoint union of a finite collection of sets, each of which    

             has measure less than 𝛿. 

   [   |  |   |   |   |  |   |   |  |   |   |  ] 

               −𝑛0                                                    𝑛0 

                              −𝑛0 = 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑚 = 𝑛0.  

 

             Let 𝐸𝑗 = 𝐸 ∩ (𝑎𝑗−1, 𝑎𝑗];     with 𝑚(𝐸𝑗) < 𝛿. 

 

               Then 𝐸1, … , 𝐸𝑚 , 𝐸~[−𝑛0, 𝑛0] works. 
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Prop.  Let 𝑓 be a measurable function on 𝐸.  If 𝑓 is integrable over 𝐸,         

          then for 𝜖 > 0, there is a 𝛿 > 0 for which  

                  If 𝐴 ⊆ 𝐸 is measurable and 𝑚(𝐴) < 𝛿 then ∫ |𝑓| < 𝜖
𝐴

. 

 Conversely, in the case 𝑚(𝐸) < ∞, if for each 𝜖 > 0, there is a 𝛿 > 0 

          for which if 𝐴 ⊆ 𝐸 is measurable and 𝑚(𝐴) < 𝛿, then  ∫ |𝑓| < 𝜖
𝐴

 then 

          𝑓 is integrable over 𝐸. 

 

Proof: Let 𝑓 = 𝑓+ − 𝑓−; and establish for 𝑓+ and 𝑓−, so assume 𝑓 is        

           non-negative.                                                                                                               

             Assume 𝑓 is integrable over 𝐸. Let 𝜖 > 0.  

 

  By additivity over subdomains, for 𝑎 > 0 we have: 

∫ 𝑓
𝐴

= ∫ 𝑓
{𝑥∈𝐴|𝑓(𝑥)<𝑎}

+ ∫ 𝑓
{𝑥∈𝐴|𝑓(𝑥)≥𝑎}

  

 ≤ 𝑎 ∙ 𝑚(𝐴) + ∫ 𝑓.
{𝑥∈𝐴|𝑓(𝑥)≥𝑎}

   

 

     Since ∞ > ∫ 𝑓
𝐸

≥ ∫ 𝑓
𝐴

, we can choose 𝑎 large enough that: 

∫ 𝑓
{𝑥∈𝐴|𝑓(𝑥)≥𝑎}

<
𝜖

2
     

      So, ∫ 𝑓
𝐴

< 𝑎 ∙ 𝑚(𝐴) +
𝜖

2
 .    

   

      Choose  𝛿 =
𝜖

2𝑎
 , then if 𝐴 ⊆ 𝐸 and 𝑚(𝐴) < 𝛿 =

𝜖

2𝑎
 ,  

       then ∫ 𝑓
𝐴

< 𝑎 (
𝜖

2𝑎
) +

𝜖

2
= 𝜖. 
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Conversely, suppose 𝑚(𝐸) < ∞ and that for each 𝜖 > 0, there is a     

𝛿 > 0 for which, if 𝐴 ⊆ 𝐸 is measurable and 𝑚(𝐴) < 𝛿, then  

∫ |𝑓|
𝐴

< 𝜖 .  

 

Let 𝛿 correspond to 𝜖 = 1.  

Since 𝑚(𝐸) < ∞ according to the previous lemma we can write            

𝐸 = ⋃ 𝐸𝑘
𝑁
𝑘=1 , disjoint sets of measure less than 𝛿.  

Therefore, ∑ ∫ 𝑓
𝐸𝑘

𝑁
𝑘=1 < 𝑁 since ∫ 𝑓

𝐸𝑘
< 1 for each 𝑘. 

Thus ∫ 𝑓 = ∑ ∫ 𝑓
𝐸𝑘

𝑁
𝑘=1 < 𝑁

𝐸
 and 𝑓 is integrable.  

 

         Note: if 𝑚(𝐸) = ∞, then 𝑓(𝑥) = 1 has ∫ |𝑓|
𝐴

< 𝜖 if 𝛿 = 𝜖, but 𝑓    

          is not integrable over 𝐸. 

 

Def.  A family 𝐹 of measurable functions on 𝐸 is said to be uniformly integrable   

         over 𝐸 if for each 𝜖 > 0, there is a 𝛿 > 0 such that for each 𝑓 ∈ 𝐹, if   

        𝐴 ⊆ 𝐸 is measurable and 𝑚(𝐴) < 𝛿, then ∫ |𝑓|
𝐴

< 𝜖. 

 

Ex.  Let 𝑔 be a non-negative integrable function over 𝐸. Define: 

𝐹 = {𝑓|𝑓 is measurable and |𝑓| ≤ 𝑔 on 𝐸}. 

       Then 𝐹 is uniformly integrable. This follows from the previous proposition 

        and that for any measurable subset 𝐴 ⊆ 𝐸: 

∫ |𝑓|
𝐴

≤ ∫ 𝑔
𝐴
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Ex.  Let 𝑓𝑛(𝑥) = 𝑛   if  0 ≤ 𝑥 ≤
1

𝑛
 

                       = 0    if  
1

𝑛
≤ 𝑥 ≤ 1. 

        {𝑓𝑛} are not uniformly integrable over [0, 1] since if 𝜖 =
1

2
 then given any 

        𝛿 > 0 there exists an 𝑛 ∈ ℤ+ such that 
1

𝑛
< 𝛿 and ∫ 𝑓𝑛 = 1

[0,
1

𝑛
]

. 

 

 

Prop.  Let {𝑓𝑘}𝑘=1
𝑛  be a finite collection of functions, each of which is integrable  

 over 𝐸.  Then {𝑓𝑘}𝑘=1
𝑛  is uniformly integrable.  

 

 

Proof:  Let 𝜖 > 0.  

           For 1 ≤ 𝑘 ≤ 𝑛 by the previous proposition there is a 𝛿𝑘 such that if 

           𝐴 ⊆ 𝐸 is measurable and 𝑚(𝐴) < 𝛿𝑘, then∫ |𝑓𝑘|
𝐴

< 𝜖.   

 

           Let 𝛿 = min {𝛿1, … , 𝛿𝑛} then if 𝐴 ⊆ 𝐸 is measurable and 𝑚(𝐴) < 𝛿, 

           then ∫ |𝑓𝑘|
𝐴

< 𝜖 for all 1 ≤ 𝑘 ≤ 𝑛. 
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Prop.  Assume 𝐸 has finite measure. Let {𝑓𝑛} be uniformly integrable  over 𝐸. If 

          {𝑓𝑛} → 𝑓 pointwise a.e. on 𝐸, then 𝑓 is integrable over 𝐸. 

 

Proof:  Let 𝜖 = 1 and 𝛿0 > 0 such that if 𝑚(𝐴) < 𝛿0 then 

∫ |𝑓𝑛|
𝐴

< 𝜖 = 1.   

 

 Since 𝑚(𝐸) < ∞ we can express 𝐸 as the disjoint union of a finite 

 collection of measurable sets {𝐸𝑘}𝑘=1
𝑁  such that 𝑚(𝐸𝑘) < 𝛿0 for 

 1 ≤ 𝑘 ≤ 𝑁.  

 

          Thus, ∫ |𝑓𝑛|
𝐸

= ∑ ∫ |𝑓𝑛|
𝐸𝑘

𝑁
𝑘=1 < 𝑁.  

 

           But by Fatou’s lemma,      ∫ |𝑓|
𝐸

≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ |𝑓𝑛|
𝐸

< 𝑁.  

 

           So , 𝑓 is integrable over 𝐸. 
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Vitali Convergence Theorem: Let 𝐸 be of finite measure. Suppose {𝑓𝑛} is     

        uniformly integrable over 𝐸. If 𝑓𝑛 → 𝑓 pointwise a.e., then 𝑓 is integrable  

        over 𝐸 and lim
𝑛→∞

∫ 𝑓𝑛𝐸
= ∫ 𝑓

𝐸
.  

 

Proof:  The previous proposition tells us 𝑓 is integrable and hence is finite a.e.  

We can assume 𝑓𝑛 → 𝑓 pointwise by excising the set of measure 0 
where it doesn’t.  

Notice for any measurable subset 𝐴 ⊆ 𝐸, 

|∫ 𝑓𝑛𝐸
− ∫ 𝑓

𝐸
| = |∫ (𝑓𝑛 − 𝑓)

𝐸
|   

  ≤ ∫ |𝑓𝑛 − 𝑓|
𝐸

  

  = ∫ |𝑓𝑛 − 𝑓|
𝐸~𝐴

+ ∫ |𝑓𝑛 − 𝑓|
𝐴

  

     |∫ 𝑓𝑛𝐸
− ∫ 𝑓

𝐸
| ≤  ∫ |𝑓𝑛 − 𝑓|

𝐸~𝐴
+ ∫ |𝑓𝑛|

𝐴
+ ∫ |𝑓|

𝐴
.  

 

 

{𝑓𝑛} uniformly integrable ⟹ there is a 𝛿 > 0 such that if 𝑚(𝐴) < 𝛿, 

then ∫ |𝑓𝑛|
𝐴

<
𝜖

3
 .    

 

         By Fatou’s Lemma: ∫ |𝑓|
𝐴

≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ |𝑓𝑛|
𝐴

<
𝜖

3
 .  

 

 Since 𝑓 is real valued and 𝑚(𝐸) < ∞, by Egoroff’s Theorem there is 

 a measurable subset 𝐸0 ⊆ 𝐸 for which 𝑚(𝐸0) < 𝛿 and 𝑓𝑛 → 𝑓 

 uniformly on 𝐸~𝐸0.  

          Thus there exists 𝑁 such that if 𝑛 ≥ 𝑁 then,   

                            |𝑓𝑛 − 𝑓| <
𝜖

3𝑚(𝐸)
    on 𝐸~𝐸0.     
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          Now take 𝐴 = 𝐸0 and we get: 

|∫ 𝑓𝑛𝐸
− ∫ 𝑓

𝐸
| ≤  |∫ 𝑓𝑛𝐸~𝐸0

− 𝑓| +  ∫ |𝑓𝑛|
𝐸0

+ ∫ |𝑓|
𝐸0

  

                             < (
𝜖

3𝑚(𝐸)
) (𝑚(𝐸~𝐸0)) +

𝜖

3
+

𝜖

3
≤ 𝜖 . 

 So lim
𝑛→∞

∫ 𝑓𝑛𝐸
= ∫ 𝑓

𝐸
. 

 

Theorem:  Let 𝐸 be of finite measure. Suppose {ℎ𝑛} is a sequence of   
 non-negative integrable functions that converge pointwise   

 a.e. to ℎ ≡ 0. Then, 

  lim
𝑛→∞

∫ ℎ𝑛𝐸
= 0 if, and only if, {ℎ𝑛} is uniformly integrable.  

 

Proof:  If {ℎ𝑛} is uniformly integrable then by the Vitali convergence        

            theorem, lim
𝑛→∞

∫ ℎ𝑛𝐸
= 0. 

   Now suppose lim
𝑛→∞

∫ ℎ𝑛𝐸
= 0.    

            Let 𝜖 > 0.  We can find 𝑁 such that if 𝑛 ≥ 𝑁 then ∫ ℎ𝑛𝐸
< 𝜖.  

 

    Since each ℎ𝑛 ≥ 0 on 𝐸, if 𝐴 ⊆ 𝐸 is measurable and 𝑛 ≥ 𝑁, then     

             ∫ ℎ𝑛𝐴
< 𝜖.  

 

 According to an earlier proposition, a finite collection {ℎ𝑛}𝑛=1
𝑁−1 of 

 integrable functions is uniformly integrable.   

            Thus given 𝜖 > 0  there exists a 𝛿 > 0 such that if 𝑚(𝐴) < 𝛿 then   

           ∫ ℎ𝑛𝐴
< 𝜖,  𝑛 = 1, … , 𝑁 − 1.   

           Thus {ℎ𝑛}𝑛=1
∞  are uniformly integrable.  


