Continuity of Integration/L! Approximations

Theorem (countable additivity of integration): Let f be integrable over E and
{E,, };=1 adisjoint countable collection of measurable subsets of E with
U?';l E; = E, then

fE f=2n=1 fEnf-

Proof: Let f, = (f)(xn) where x,, is the characteristic function of the
measurable set U}t =, Ey.

fn is measurable and | f;,| < |f| onE.

Notice that f,, = f pointwise on E, so by the Lebesgue dominated convergence

theorem Al_r)glo fE fn = fE f.
The set {E,, }n=4 are disjoint so: fU’;::lEkf =yr 4 fEkf.

Thus [y f=Tim [ fu=lim Sk [, f=3i, [, f.

Theorem: (continuity of integration): Let f be integrable over E.

1. If {E}, };=1 is an ascending countable collection of measurable subsets of

E, th = lim :
» tNEN fU;.lo=1Enf N— 00 fEnf
2. If {E, }7—1 is a descending countable collection of measurable subsets of

E, then fﬂ f = lim fE f.

o0
n:lEﬂ. n—-oo



Proof: Follows from the countable additivity of integration and by taking the
ascending sequence of sets and creating a disjoint collection of sets with the same
union (see proof of the continuity of measure).

Theorem (L' Approximations): Let f be integrable over R and € > 0.

1. There is a simple function 77 on IR which has finite support and

f]R{ |f_77| <e€.

2. There is a step function s on R which vanished outside a closed, bounded

interval and fR If —s| <e.

3. There is a continuous function g on R which vanishes outside a bounded

set and fR If — gl <e.

Proof: If f is nonnegative and measurable on IR, then by the Simple
Approximation Theorem there exists an increasing sequence of simple functions

{on} with [@y| < f and @, — f pointwise.

Let gn = (pn()([_n,n]), which is also a simple function.

Then {g,, } are measurable, increasing, simple, have finite supportand g,, = f
pointwise because @,, = f pointwise.

By the monotone convergence theorem: Al_r)lgo fR gn = fR f

Thus lim fo (f —gn) = 0.

Notice that f — g, = 0so f — g, = |f — gnl, so lim fR |f —gn| = 0.
n—-0o

Hence for all € > 0 there exists N such thatifn = N then

f]R |f_gn| <e€.



If f is not nonnegative, write f = f* — f~ and find simple functions g,, and
h,, thatworkfor f* and f~ respectively. I, = g,, — h,, will then work for f.

To prove part 2, we only need to show that we can approximate a simple function
on a bounded measurable set by step functions on a bounded measurable set.

Since every simple function is a linear combination of characteristic functions, we
just need to show given Y, where E is bounded and measurable, we can find a

step function such that fR lxg — s| <e.

Since E is measurable we can find a disjoint collection of open intervals {I,, };=1
suchthat 0 = Uy-{ Iy 2 E and m(O~E) < g :

Since O has finite measure, there is N such that m(Up=y 41 [x) < % :

Now let § = legzl X1, ; astep function. So we have:

Jo X = sl < Yi=1 Jo VXEan=Xn| + Xg=n+1 S | XEnr,]
< m(Ug=1 L~E) + m(Ug=y+1 I N E)



To prove part 3, it suffices to show that given a step function

S = Yr-1 X1, we can find a continuous function g on R such that

Jgls—gl<e.

In fact, since the {Ik}}}:l are disjoint, it’s sufficient to do this for one open
interval (a, b).

Letg(x) =1 if a+§$x$b—§
and linearly goes to 0 at a and b, and equals 0 if x € [a, b]. Then

fR |X[a,b] — 9| S‘m(a,a+§) +m(b —%,b) = €.

€
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