The Lebesgue Integral fE f: f Bounded, m(E) < o

Note: From now on integration will mean Lebesgue integration unless
otherwise specified.

et = X1t a;xg, onE, where E; = Y 1(a) ={x € E|Y(x) = a;}

Be a simple function (a;’s are distinct and {E;} disjoint).

Def. For a simple function 1) defined on a set of finite measure E, define

Jg¥ = Xiz1 ai(m(Ey).

Notice that this definition of fE 1 allows us to evaluate the following integral.
Ex. Letf(x)=1 ifxeQn[0,1] =E,
=0 if [0,1]~E;.

Evaluate f[o,l]f’

Let E; = QN [0,1] and E, = [0,1]~E;, then we can write:

flx) = 1()(151) + O(XEZ) = XE,-

Thus, f[o,l]f =1 (m()(El)) = 0.



Lemma: Let {Ei}?zl be a finite disjoint collection of measurable subsets of a set

of finite measure E. For 1 < i < n, let a; be a real number. If

@ =Yl apxg on Ethen [ @ =31, a;(m(E))).

Proof: The issue here is that {@; } may not be distinct (i.e., ¢ is not written in

canonical form). If we rewrite @ in canonical form the result readily follows.

0 4€9)
@(x) = a1 xg, + axXg, + Q1 XE,;
a % Let E' = E; U E5 then we can
Write @ in canonical form:
E, E, E, p(x) =a;xg + a2 Xk,

Prop. Let @ and Y be simple function defined on a set of finite measure E.
Then

1. fora, BER [ (ap+pP)=af, o+ [, .
2. ifgp < PonkE then

;o< [, W

Proof: Since ¢ and 1 are simple we can find a finite disjoint collection of sets
{E;}1-, such that ¢ and 1 are constant on each E; and E = U}L, E;.

y =Y(x) O—Jr

y = @(x)

L o=

>

el

Ey B E; E,



Foreachl <i<nlet: @(x)=a;and Y(x) = b; forx € E|.

By the preceding lemma:

Jp o =21 ai(m(Ep)) and [, ¥ = XLy bi(m(E)).

The simple function a@ + B has:
(ap + pY)(x) = aa; + Bb; forx € E;.

Again by the preceding lemma we have:
[, (ap + B) = ¥ (aa; + Bb)(m(ED)
= a X, (a)(m(E)) + B X, (b) (m(E))
=af, o+B [, ¥

For the second part, letg =1 — @ = 0.
By the first part: fE llj—fE Q= fE Y —o) = fE g=0

since g = 0.

Thus fE Y ZfE Q.

Notice that a step function is an example of a simple function (where E; is an
interval). Since the measure of an interval is its length, we can see that the
definition of the Lebesgue integral and Riemann integral agree for step
functions.



Let f be a bounded real valued function defined on a set of finite measure E.

We define the lower and upper Lebesgue integrals of f by:

Lower Lebesgue Integral of f=sup {fE @| @ is simple and ¢ < f}

Upper Lebesgue Integral of f=inf{fE @| @ is simple and ¢ > f}

Since f is bounded, by the monotonicity property (if ¢ < 1 then

fE @ < fE 1), the lower and upper integrals are finite and the upper integral

is always at least as large as the lower integral.

Def. A bounded function f on a domain E of finite measure is said to be
Lebesgue integrable over E if its upper and lower Lebesgue integral over E are
equal. That common value is called the Lebesgue integral of f over E, denoted

bny f.

Theorem: Let f be a bounded function defined on a closed, bounded interval
[a, b]. If f is Riemann integrable over [a, b], then it is Lebesgue integrable over
[a, b] and the two integrals are equal.

Proof: Each step function is a simple function and the Riemann and Lebesgue
integrals agree for step functions.



Theorem: Let f be a bounded measurable function on a set of finite measure E.
Then f is integrable over E.

Proof: Letn € Z*.

1
By the Simple Approximation Theorem with € = - there are two simple
functions @,,, P, on E with

On < f <, and OSI/)n_(Pn—%' on k.

Thus we have:

0= fE Yn — fE Pn = fE (Yn —n) < %(m(E))

Now notice that:
0< inf{fE @| @ is simple and ¢ > f}
—sup {J, @| ¢ issimple and ¢ < f}

<Jp Yn—J; ¢n<=(m(E)).

Now let n go to o,

so the upper and lower integrals are equal and f is integrable.



Theorem: Let f and g be bounded measurable function on a set of finite

measure E. Then

1. fora,BER, [ (af +Bg)=af. f+B[, g.
2. if f < gonkE then

I <l g

Proof: af + B g is a bounded measurable function on E because f and g are,
hence it’s integrable.

First let’s show fE af = afE f.

If & > 0 then

Jooaf = Jof fp b= @l fp g =l f.

If & < 0 then

Jo af = jnf f, w=@swf; Y=al, f.
osf

To establish linearity we just need to show fE (f+g) = fE [+ fE g.

Let Y4 and Y, be simple functions with f < ¥, and g < 1, on E.

Y1 + Y, issimpleand f + g <Y, + Y, onE. Thus

fE (f-l_g)SfE lp1+¢2:fE l/)1+fE lpZ'



o Jyf+r)=, inf (g ¥itfp )=l f+]; o
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Similarly, if @1 and ¢, are simple functions with ¢; < f and @, < g we get

f+p=f f+]. g

Thust (f+g)=fE f+fE g.

To prove monotonicity assume f < gonE andleth =g — f = 0.

By linearity: fE g—fE f=fE (f—g)=fE h=0.

so o f<l g

Corollary: Let f be a bounded measurable function on a set of finite measure E.

Suppose A and B are disjoint measurable subsets of E. Then:

faonf =D f+ 1y f:

Proof: (f)(x4) and (f)(xp) are bounded measurable functions on E and

=0 + () xs)-
For any bounded measurable subset £; € E

Jo. f= Iy ()

thus: [, o f = [ (O)Caus) = [, (DG + ()]
=[O+, Ousd)=f, f+], .



Corollary: Let f be a bounded measurable function on a set of finite measure E.

Then |fEf|SfE|f|

Proof: |f| is bounded and measurable, hence integrable. In addition:

—Ifl = f =Ifl.

Thus — [ IFI< Sy F<fp IFl = |[; £ < S 11

Prop. Let {f,,} be a sequence of bounded measurable functions on a set of finite
measure E. If f, = f uniformly on E, then

hme le:fE f

n—oo

Proof: Since f;; = f uniformly on E and each f,, is bounded, the limit f must be
bounded.

f is measurable because it’s the pointwise limit of a sequence of measurable
functions (uniform convergence implies pointwise convergence).

Let € > 0. Choose N such thatifn = N then:

f = fol <oy " E-
By linearity and monotonicity:
[ =t Rl =10, =< f, If = fal < C
Thus lim [ fo = [, f.

n—>00

5 (mE) =e.

m(



Ex. We saw in the example:

Let f,(x) =0 if %<x§10rx=0

S

=n if 0<x<

n—oo

. 1 1 . 1 1
lim [ f,=1, but [ f=0. So%l_l)TolofO fmn#El, f
The “problem” here is that f,, = f = 0 pointwise, but not uniformly.

The Bounded Convergence Theorem: Let {f,} be a sequence of bounded
measurable functions on a set of finite measure E. Suppose {f;, } is uniformly
pointwise bounded on E, i.e. there is a number M > 0 such that |f;,,]| < M on
E foralln. If f,, = f pointwise on E then

lim [ fo=1J; f-

n—-oo

Proof: Since f,, = f pointwise on E and f,, is measurable for alln, f is
measurable.

Since |f,,] < M on E foralln, |f| < M.

So f is bounded and measurable on E, thus it’s integrable over E'.

By Egoroff’s theorem we know that f;, = f uniformly on B € E, where
m(E~B) is “small”.

We must show that for all € > 0 there existsan N € Z* such thatif n > N

then|fE fn—fE fl <e.
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Notice that:

J mmf, r=) mp=] G-pr| G-

= fB (fn _f) +fE~Bfn +fE'~B_f'

Thus we have:

|fE fn—fE fI=IL(fn—f)+E~Bfn+L~B—fI

< Jp 1 =D+ [ gl + J 51— 1l

< [ lfu = fI + 2M(m(E~B)).

Let € > 0. By Egoroff’s theorem we can choose B so that f,, = f uniformly on
€
B, and m(E~B) < M

Since f,, = f uniformly on B, there exists an N such thatif n = N then

€

Thus we have:

[ o=, FI< [, |fn—fl1+2M(m(E~B))

€ €

€ €
= 2mE)) (m(B)) +2M (m) =2t2=¢

Thus if f, = f pointwise (but not uniformly) on E, and {f,,} are uniformly

bounded then we do have rlll_r)l;lo fE fn = fE f.



Ex. let f,(x) =x™ 0<x<1. Then f;, = f pointwise where
f(x)=0 if0<x<1
=1 if x = 1.

{f,.} does not converge uniformly to f, but |f;,(x)| < 1 forall

0 < x <1, so0{f,}isuniformly pointwise bounded on [0,1].

Thus by the previous theorem 7{1_{210 f[0,1] fn = f[o,l]f'
In fact we can check this with the following calculation:

1 x?’l+1 _ 1 1 1
n _ x=1 __ . n — 1: —
X" =——|2Z5 =—: Thus lim [ x" = lim — =
fo n+1 |.X,'—0 n+1’ n—oo fo n—oo N+

1 .
fO f = 0 SO TJLI_I)EO f[O,l] le = f[O,l]f'

0.

11



