
1 
 

               The Lebesgue Integral ∫ 𝑓:  𝑓
𝐸

 Bounded, 𝑚(𝐸) < ∞ 

 

Note:  From now on integration will mean Lebesgue integration unless 

otherwise specified. 

 

Let 𝜓 = ∑ 𝑎𝑖𝜒𝐸𝑖

𝑛
𝑖=1   on 𝐸,  where 𝐸𝑖 = 𝜓−1(𝑎𝑖) = {𝑥 ∈ 𝐸| 𝜓(𝑥) = 𝑎𝑖} 

Be a simple function (𝑎𝑖′𝑠 are distinct and {𝐸𝑖} disjoint). 

 

Def.  For a simple function 𝜓 defined on a set of finite measure 𝐸, define 

                          ∫ 𝝍 = ∑ 𝒂𝒊(𝒎(𝑬𝒊))𝒏
𝒊=𝟏

.

𝑬
. 

 

Notice that this definition of ∫ 𝜓
𝐸

 allows us to evaluate the following integral.  

 

Ex.    Let 𝑓(𝑥) = 1   if 𝑥 ∈ ℚ ∩ [0,1] = 𝐸1 

                        = 0   if [0,1]~𝐸1. 

       Evaluate  ∫ 𝑓
[0,1]

. 

 

     Let 𝐸1 = ℚ ∩ [0,1]   and   𝐸2 = [0,1]~𝐸1,   then we can write: 

             𝑓(𝑥) = 1(𝜒𝐸1
) + 0(𝜒𝐸2

) = 𝜒𝐸2
. 

     Thus,  ∫ 𝑓
[0,1]

= 1 (𝑚(𝜒𝐸1
)) = 0.   
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Lemma:  Let {𝐸𝑖}𝑖=1
𝑛  be a finite disjoint collection of measurable subsets of a set 

of finite measure 𝐸.  For 1 ≤ 𝑖 ≤ 𝑛, let 𝑎𝑖  be a real number.  If  

𝜑 = ∑ 𝑎𝑖𝜒𝐸𝑖

𝑛
𝑖=1  on 𝐸 then  ∫ 𝜑 = ∑ 𝑎𝑖(𝑚(𝐸𝑖))𝑛

𝑖=1𝐸
. 

 

Proof: The issue here is that {𝑎𝑖} may not be distinct (i.e., 𝜑 is not written in 

canonical form).  If we rewrite 𝜑 in canonical form the result readily follows. 

 

                                                                     𝜑(𝑥) = 𝑎1𝜒𝐸1
+ 𝑎2𝜒𝐸2

+ 𝑎1𝜒𝐸3
; 

                                                           Let 𝐸′ = 𝐸1 ∪ 𝐸3 then we can                  

                                                           Write 𝜑 in canonical form:                           

                                                                          𝜑(𝑥) = 𝑎1𝜒𝐸′ + 𝑎2𝜒𝐸2
  

 

Prop.  Let 𝜑 and  𝜓 be simple function defined on a set of finite measure 𝐸.  
Then  

  1.   for 𝛼, 𝛽 ∈ ℝ   ∫ (𝛼𝜑 + 𝛽𝜓) = 𝛼 ∫ 𝜑 + 𝛽 ∫ 𝜓
𝐸𝐸𝐸

. 

  2.   if 𝜑 ≤  𝜓 on 𝐸 then 

                    ∫ 𝜑
𝐸

≤ ∫  𝜓
𝐸

. 

 

Proof:  Since 𝜑 and 𝜓 are simple we can find a finite disjoint collection of sets 

{𝐸𝑖}𝑖=1
𝑛  such that 𝜑 and 𝜓 are constant on each 𝐸𝑖  and 𝐸 = ⋃ 𝐸𝑖

𝑛
𝑖=1 . 

 

 

 

       𝐸1             𝐸2          𝐸3 

𝜑(𝑥) 

𝑎1 

𝑎2 

        𝐸1      𝐸2           𝐸3                𝐸4 

𝑦 = 𝜑(𝑥) 

𝑦 = 𝜓(𝑥) 



3 
 

For each 1 ≤ 𝑖 ≤ 𝑛 let:   𝜑(𝑥) = 𝑎𝑖 and  𝜓(𝑥) = 𝑏𝑖  for 𝑥 ∈ 𝐸𝑖. 

By the preceding lemma:  

          ∫ 𝜑 = ∑ 𝑎𝑖(𝑚(𝐸𝑖))𝑛
𝑖=1𝐸

 and ∫ 𝜓 = ∑ 𝑏𝑖(𝑚(𝐸𝑖))𝑛
𝑖=1𝐸

.  

 

The simple function 𝛼𝜑 + 𝛽𝜓 has: 

                   (𝛼𝜑 + 𝛽𝜓)(𝑥) = 𝛼𝑎𝑖 + 𝛽𝑏𝑖     for 𝑥 ∈ 𝐸𝑖. 

 

Again by the preceding lemma we have: 

       ∫ (𝛼𝜑 + 𝛽𝜓) = ∑ (𝛼𝑎𝑖 + 𝛽𝑏𝑖)(𝑚(𝐸𝑖))𝑛
𝑖=1𝐸

  

                                  = 𝛼 ∑ (𝑎𝑖)(𝑚(𝐸𝑖)) + 𝛽 ∑ (𝑏𝑖)(𝑚(𝐸𝑖))𝑛
𝑖=1

𝑛
𝑖=1  

                                  = 𝛼 ∫ 𝜑 + 𝛽 ∫ 𝜓
𝐸𝐸

.  

 

For the second part, let 𝑔 = 𝜓 − 𝜑 ≥ 0. 

By the first part:    ∫  𝜓
𝐸

− ∫ 𝜑
𝐸

= ∫  (𝜓 − 𝜑) = ∫  𝑔 ≥ 0
𝐸𝐸

 

since  𝑔 ≥ 0. 

Thus  ∫  𝜓
𝐸

≥ ∫ 𝜑
𝐸

. 

 

     Notice that a step function is an example of a simple function (where 𝐸𝑖  is an 

interval).  Since the measure of an interval is its length, we can see that the 

definition of the Lebesgue integral and Riemann integral agree for step 

functions. 
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     Let 𝑓 be a bounded real valued function defined on a set of finite measure 𝐸.  

We define the lower and upper Lebesgue integrals of 𝑓 by: 

       Lower Lebesgue Integral of 𝒇=sup {∫ 𝜑| 
𝐸

𝜑 𝑖𝑠 𝑠𝑖𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝜑 ≤ 𝑓} 

       Upper Lebesgue Integral of 𝒇=inf {∫ 𝜑| 
𝐸

𝜑 𝑖𝑠 𝑠𝑖𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝜑 ≥ 𝑓}.  

 

Since 𝑓 is bounded, by the monotonicity property (if 𝜑 ≤  𝜓 then                       

∫ 𝜑
𝐸

≤ ∫  𝜓
𝐸

), the lower and upper integrals are finite and the upper integral 

is always at least as large as the lower integral. 

 

Def.  A bounded function 𝑓 on a domain 𝐸 of finite measure is said to be 

Lebesgue integrable over 𝑬 if its upper and lower Lebesgue integral over 𝐸 are 

equal.  That common value is called the Lebesgue integral of 𝑓 over 𝐸, denoted 

by ∫ 𝑓
𝐸

. 

 

 

Theorem:  Let 𝑓 be a bounded function defined on a closed, bounded interval 

[𝑎, 𝑏].  If 𝑓 is Riemann integrable over [𝑎, 𝑏], then it is Lebesgue integrable over 

[𝑎, 𝑏] and the two integrals are equal. 

 

Proof:  Each step function is a simple function and the Riemann and Lebesgue 

integrals agree for step functions. 
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Theorem: Let 𝑓 be a bounded measurable function on a set of finite measure 𝐸.  

Then 𝑓 is integrable over 𝐸. 

 

Proof:  Let 𝑛 ∈ ℤ+.   

By the Simple Approximation Theorem with 𝜖 =
1

𝑛
  there are two simple 

functions 𝜑𝑛, 𝜓𝑛 on 𝐸 with 

            𝜑𝑛 ≤ 𝑓 ≤ 𝜓𝑛    and     0 ≤ 𝜓𝑛 − 𝜑𝑛 ≤
1

𝑛
 ,     on 𝐸. 

 

Thus we have: 

               0 ≤ ∫ 𝜓𝑛 − ∫ 𝜑𝑛 = ∫ (𝜓𝑛 − 𝜑𝑛) ≤
1

𝑛
(𝑚(𝐸))

𝐸𝐸𝐸
. 

 

Now notice that: 

0 ≤ inf {∫ 𝜑| 
𝐸

𝜑 𝑖𝑠 𝑠𝑖𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝜑 ≥ 𝑓}                                                              

                                                       −sup {∫ 𝜑| 
𝐸

𝜑 𝑖𝑠 𝑠𝑖𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝜑 ≤ 𝑓}  

    ≤ ∫ 𝜓𝑛 − ∫ 𝜑𝑛 ≤
1

𝑛
(𝑚(𝐸))

𝐸𝐸
 .    

 

Now let 𝑛 go to ∞, 

so the upper and lower integrals are equal and 𝑓 is integrable. 
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Theorem: Let 𝑓 and 𝑔 be bounded measurable function on a set of finite 

measure 𝐸.  Then  

 1.  for 𝛼, 𝛽 ∈ ℝ,   ∫ (𝛼𝑓 + 𝛽𝑔) = 𝛼 ∫ 𝑓 + 𝛽 ∫ 𝑔
𝐸𝐸𝐸

. 

 2.  if 𝑓 ≤  𝑔 on 𝐸 then 

                    ∫ 𝑓
𝐸

≤ ∫  𝑔
𝐸

. 

 

Proof: 𝛼𝑓 + 𝛽𝑔 is a bounded measurable function on 𝐸 because 𝑓 and 𝑔 are, 
hence it’s integrable. 

First let’s show   ∫ 𝛼𝑓 = 𝛼 ∫ 𝑓
𝐸𝐸

.  

 

If 𝛼 > 0 then 

∫ 𝛼𝑓 = inf
 𝜓≥𝛼𝑓

∫  𝜓 = (𝛼) inf
 
𝜓
𝛼

≥𝑓
∫

𝜓

𝛼
 =

𝐸𝐸𝐸
𝛼 ∫ 𝑓

𝐸
.    

 

If 𝛼 < 0 then  

∫ 𝛼𝑓 = inf
 𝜓≥𝛼𝑓

∫  𝜓 = (𝛼) sup
𝜓
𝛼

 ≤𝑓

∫  
𝜓

𝛼
=

𝐸𝐸𝐸
𝛼 ∫ 𝑓

𝐸
 .  

 

 

To establish linearity we just need to show ∫ (𝑓 + 𝑔) = ∫ 𝑓
𝐸

+ ∫ 𝑔
𝐸𝐸

.  

 

Let 𝜓1 and 𝜓2 be simple functions with 𝑓 ≤ 𝜓1 and 𝑔 ≤ 𝜓2 on 𝐸. 

𝜓1 + 𝜓2 is simple and 𝑓 + 𝑔 ≤ 𝜓1 + 𝜓2  on 𝐸.  Thus 

∫ (𝑓 + 𝑔) ≤ ∫ 𝜓1 + 𝜓2 = ∫ 𝜓1 +
𝐸𝐸𝐸 ∫ 𝜓2𝐸

 . 
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So  ∫ (𝑓 + 𝑔) ≤ inf
𝜓1≥𝑓 𝜓2≥𝑔  

(∫ 𝜓1𝐸𝐸
+ ∫ 𝜓2) = ∫ 𝑓 + ∫ 𝑔

𝐸𝐸𝐸
.  

 

Similarly, if 𝜑1 and  𝜑2 are simple functions with 𝜑1 ≤ 𝑓 and 𝜑2 ≤ 𝑔 we get  

∫ (𝑓 + 𝑔) ≥
𝐸

∫ 𝑓 + ∫ 𝑔
𝐸𝐸

.  

 

Thus ∫ (𝑓 + 𝑔) = ∫ 𝑓
𝐸

+ ∫ 𝑔
𝐸𝐸

.  

 

To prove monotonicity assume 𝑓 ≤ 𝑔 on 𝐸 and let ℎ = 𝑔 − 𝑓 ≥ 0.  

 

By linearity:    ∫ 𝑔
𝐸

− ∫ 𝑓 = ∫ (𝑓 − 𝑔) = ∫ ℎ ≥ 0
𝐸𝐸

.
𝐸

 

So       ∫ 𝑓
𝐸

≤ ∫  𝑔
𝐸

. 

 

Corollary:  Let 𝑓 be a bounded measurable function on a set of finite measure 𝐸.  

Suppose 𝐴 and 𝐵 are disjoint measurable subsets of 𝐸. Then:                                   

                             ∫ 𝑓
𝐴∪𝐵

= ∫ 𝑓
𝐴

+ ∫ 𝑓
𝐵

. 

 

Proof:  (𝑓)(𝜒𝐴) and (𝑓)(𝜒𝐵) are bounded measurable functions on 𝐸 and          

                                              𝑓 = (𝑓)(𝜒𝐴) + (𝑓)(𝜒𝐵). 

 

For any bounded measurable subset 𝐸1 ⊆ 𝐸 

                               ∫ 𝑓 = ∫ (𝑓)(𝜒𝐸1
) 

𝐸𝐸1
.   

 

Thus:   ∫ 𝑓
𝐴∪𝐵

= ∫ (𝑓)(𝜒𝐴∪𝐵) = ∫ [(𝑓)(𝜒𝐴) + (𝑓)(𝜒𝐵)]
𝐸𝐸

 

                        = ∫ (𝑓)(𝜒𝐴) + ∫ (𝑓)(𝜒𝐵)
𝐸𝐸

=∫ 𝑓
𝐴

+ ∫ 𝑓
𝐵

. 
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Corollary:  Let 𝑓 be a bounded measurable function on a set of finite measure 𝐸.  

Then      |∫ 𝑓
𝐸

| ≤ ∫ |𝑓|
𝐸

 .  

                                 

Proof:  |𝑓| is bounded and measurable, hence integrable. In addition: 

                                      −|𝑓| ≤ 𝑓 ≤ |𝑓|.  

 

Thus   − ∫ |𝑓| ≤ ∫ 𝑓 ≤ ∫ |𝑓|
𝐸𝐸𝐸

      ⇒    |∫ 𝑓
𝐸

| ≤ ∫ |𝑓|
𝐸

 .        

 

                      

Prop.  Let {𝑓𝑛} be a sequence of bounded measurable functions on a set of finite 

measure 𝐸.  If 𝑓𝑛 → 𝑓 uniformly on 𝐸, then  

                                 lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸

.
𝐸

  

 

Proof:  Since 𝑓𝑛 → 𝑓 uniformly on 𝐸 and each 𝑓𝑛 is bounded, the limit 𝑓 must be 

bounded. 

𝑓 is measurable because it’s the pointwise limit of a sequence of measurable 

functions (uniform convergence implies pointwise convergence).  

 

Let 𝜖 > 0.  Choose 𝑁 such that if 𝑛 ≥ 𝑁 then:      

                           |𝑓 − 𝑓𝑛| <
𝜖

𝑚(𝐸)
    on 𝐸. 

 

By linearity and monotonicity: 

   | ∫ 𝑓
𝐸

− ∫ 𝑓𝑛| = | ∫ (𝑓 − 𝑓𝑛)| ≤ ∫ |𝑓 − 𝑓𝑛| ≤ (
𝜖

𝑚(𝐸)𝐸𝐸𝐸
)(𝑚(𝐸)) = 𝜖.  

 Thus lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸

.
𝐸
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Ex.  We saw in the example: 

       Let  𝑓𝑛(𝑥) = 0    if   
1

𝑛
< 𝑥 ≤ 1  or  𝑥 = 0    

                          = 𝑛    if   0 < 𝑥 ≤
1

𝑛
 .  

       lim
𝑛→∞

∫ 𝑓𝑛 = 1
1

0
,   but    ∫ 𝑓 = 0

1

0
.      So lim

𝑛→∞
∫ 𝑓𝑛 ≠

1

0
∫ 𝑓

1

0
. 

 

The “problem” here is that 𝑓𝑛 → 𝑓 = 0 pointwise, but not uniformly. 

 

The Bounded Convergence Theorem:  Let  {𝑓𝑛} be a sequence of bounded 

measurable functions on a set of finite measure 𝐸.  Suppose {𝑓𝑛} is uniformly 

pointwise bounded on 𝐸, i.e. there is a number 𝑀 ≥ 0 such that |𝑓𝑛| ≤ 𝑀 on 

𝐸 for all 𝑛.  If 𝑓𝑛 → 𝑓 pointwise on 𝐸 then 

                              lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸

.
𝐸

 

 

Proof: Since 𝑓𝑛 → 𝑓 pointwise on 𝐸 and 𝑓𝑛 is measurable for all 𝑛, 𝑓 is 
measurable. 

Since |𝑓𝑛| ≤ 𝑀 on 𝐸 for all 𝑛, |𝑓| ≤ 𝑀. 

So 𝑓 is bounded and measurable on 𝐸, thus it’s integrable over 𝐸.  

 

By Egoroff’s theorem we know that 𝑓𝑛 → 𝑓 uniformly on 𝐵 ⊆ 𝐸, where 

𝑚(𝐸~𝐵) is “small”.  

 

We must show that for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ such that if  𝑛 ≥ 𝑁 

then | ∫ 𝑓𝑛 − ∫ 𝑓|
𝐸𝐸

< 𝜖. 



10 
 

Notice that: 

∫ 𝑓𝑛 − ∫ 𝑓 = ∫ (𝑓𝑛 − 𝑓) = ∫ (𝑓𝑛 − 𝑓) + ∫ (𝑓𝑛 − 𝑓)
(𝐸~𝐵)𝐵𝐸𝐸𝐸

 

                                    = ∫ (𝑓𝑛 − 𝑓) + ∫ 𝑓𝑛 + ∫ −𝑓
𝐸~𝐵𝐸~𝐵𝐵

. 

 

Thus we have: 

| ∫ 𝑓𝑛 − ∫ 𝑓| = | ∫ (𝑓𝑛 − 𝑓) + ∫ 𝑓𝑛 + ∫ −𝑓
𝐸~𝐵𝐸~𝐵𝐵

|
𝐸𝐸

 

                                              ≤ ∫ |(𝑓𝑛 − 𝑓)| + ∫ |𝑓𝑛| + ∫ | − 𝑓|
𝐸~𝐵𝐸~𝐵𝐵

 

                                               ≤ ∫ |𝑓𝑛 − 𝑓| + 2𝑀(𝑚(𝐸~𝐵)).
𝐵

   

 

Let 𝜖 > 0.  By Egoroff’s theorem we can choose 𝐵 so that 𝑓𝑛 → 𝑓 uniformly on 

𝐵, and 𝑚(𝐸~𝐵) <
𝜖

4𝑀
 .     

 

Since  𝑓𝑛 → 𝑓 uniformly on 𝐵, there exists an 𝑁 such that if 𝑛 ≥ 𝑁 then 

                            |𝑓𝑛 − 𝑓| <
𝜖

2(𝑚(𝐸))
  on 𝐵.    

 

Thus we have:      

| ∫ 𝑓𝑛 − ∫ 𝑓|
𝐸𝐸

≤ ∫ |𝑓𝑛 − 𝑓| + 2𝑀(𝑚(𝐸~𝐵))
𝐵

  

                             ≤
𝜖

2(𝑚(𝐸))
(𝑚(𝐵)) + 2𝑀 (

𝜖

4𝑀
 ) =

𝜖

2
+

𝜖

2
= 𝜖.  

 

Thus if 𝑓𝑛 → 𝑓 pointwise (but not uniformly) on 𝐸, and {𝑓𝑛} are uniformly 

bounded then we do have lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸

.
𝐸
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Ex.  Let 𝑓𝑛(𝑥) = 𝑥𝑛     0 ≤ 𝑥 ≤ 1.    Then 𝑓𝑛 → 𝑓 pointwise where 

              𝑓(𝑥) = 0         if 0 ≤ 𝑥 < 1 

                        = 1         if 𝑥 = 1.  

 

     {𝑓𝑛} does not converge uniformly to 𝑓, but |𝑓𝑛(𝑥)| ≤ 1 for all 

 0 ≤ 𝑥 ≤ 1, so {𝑓𝑛} is uniformly pointwise bounded on [0,1]. 

Thus by the previous theorem lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
[0,1]

.
[0,1]

 

 

In fact we can check this with the following calculation: 

∫ 𝑥𝑛 =
𝑥𝑛+1

𝑛+1

1

0
|𝑥=0

𝑥=1 =
1

𝑛+1
 ;    Thus  lim

𝑛→∞
∫ 𝑥𝑛 = lim

𝑛→∞

1

𝑛+1
= 0

1

0
.    

 

∫ 𝑓
1

0
= 0 so lim

𝑛→∞
∫ 𝑓𝑛 = ∫ 𝑓

[0,1]
.

[0,1]
 

 


