Lebesgue Outer Measure

The Lebesgue measure of a subset of R is a generalization of the length of
a set. We want a Lebesgue measure, m, to satisfy the following three properties:

1) Each nonempty interval I € R is Lebesgue measurable and

m(I) = I[(I) = length of I.

2) m s translation invariant. Thatis, If E is a Lebesgue measureable set and
t € R, thenthetranslateof E byt, E+t = {x + t| x € E}, is also
Lebesgue measurable and m(E + t) = m(E).

3) IfF{Ex},k = 1,2, ..., 00 is a countable disjoint collection of Lebesgue
measurable sets then
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Unfortunately, it’s not possible to create a set function that possesses all

three properties and is defined for all subsets of R. In fact, there is not even a set
function defined for all subsets of R that satisfies 1 and 2 and is finitely additive.

To construct the Lebesgue measure we will start by defining a set function
called an outer measure, denoted by m™, that is defined on all subsets of R,
satisfies properties 1 and 2, but is countably subadditive, that is, for any
collections of subsets of R, E;, disjoint or not
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We will then determine what it means for a set to be Lebesgue measurable
and show that the collection of Lebesgue measurable sets forms a g-algebra
(i.e. it contains IR and is closed with respect to complements and countable
unions) containing the open and closed sets. We will then restrict m”* to this

collection of sets and denote it by m and prove m is countably additive. m will
be the Lebesgue measure.

We start by defining the length of an interval (closed, open, or half
closed/open) I, [(I), to be |b — a|, where a, b are the endpoints, if both a and

b are finite and oo if either @ or b is not finite.

If A is a set of real numbers, consider {I;.},k = 1,2, ..., 9, where I} is an
open, bounded interval and A © Uy~ I.. We define the outer measure of E,
m*(E) to be:

m*(E) = inf{z (1) | U I}
k=1 k=1
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Notice:

a) m*(¢) = 0.
b) If E € F, thenm*(E) < m*(F) because any cover of F is also a

cover of E.



Ex. Any countable set A hasm*(4) =0

Let A = {aq,a,,as,...}andlet I, = (a; — 2k_6+1' ay + 2"_6“)'

Then 0 < m*(4A) < X5, (L) = z;:;lzik = €.

This holds for all € > 0 hence m*(4) = 0.
Ex. m"(Q) =0, m*(Z) = 0.
Prop: m*(I) = L(])

Proof: First let’s show this for a bounded interval [a, b].

Since the open interval (a — €, b + €) contains [a, b] for all
€ > 0 we have

m*([a,b]) < b —a + 2e.
Since this is true foralle > 0

m*([a,b]) < b —a.

Now let’s show m*([a, b]) = b — a:
Let {I}.} be a set of open, bounded intervals such that:
Uk=11x 2 [a, b].

We will show that:

Zk=1lUx) =2 b —a.



By the Heine-Borel Theorem any covering of [a, b] by open intervals has a
finite subcover, {I; },k = 1, ..., n. Now let’s show:

Yk=1lUx) Zb—a.
Since @ € Up~q I, there is at least one I}, with a € I.
Let’s call this I, (a4, b;) where a; < a < b;.

If by = b then l(lk) > by —ay; > b —aand:
Y= L) =b;—ay >b—a.

Otherwise by € [a, b), and since b; & (a4, b1) there exists an
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interval in the collection {I.}, k = 1,2, ..., n, call it (a,, b,) distinct
from (a4, by) for which by € (a,, by), thatisa, < by < b,.

If b, = b then:

k=11Ux) = (by — ay) + (b — ay)
=b2_(a2_b1)_a1>b2_a1>b_a.

Continue this process until it terminates (it must because n, the
number of open intervals is finite).



Thus there is a subcollection {(ay, bx)}, k = 1, ...,m of
{I.},k = 1,..n for whicha; < a while ay;; < by for

1<k<m-—1andb,, >b.

Thus Yk—q LUx) = Xkeq L(ag, by)
= (b — am) + (b1 — A1) + -+ (b1 — ay)
= by — (@m —bpm_q) = —(az — b)) — a4
> b, —a; >b—a.

Hence Y.i—1l(Ix) =b—aandsoY -, l(Iy) = b —a.

Thus m*([a, b]) = b — a.

If I is any bounded interval ((a, b), [a, b), (a, b]), then givenany € > 0

there are two closed, bounded intervals I, I, such that
LElICc,

while, [(I) —e <I(l})and () < I(I) + €.
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Thusl(I) —e <Il(l;)) =m*() <m*(I) <m*(l,) =1l() + €
sinceif A € B thenm*(4) < m*(B).

This holds forall€ > 0, thus [(I) = m*(]).



If I is unbounded, then for each natural number n, there is an interval

J S Iwithl(J) = n.Hencem*(I) = m*(J) = 1(J) = n.

Thus m*(I) = oo.

Prop: m*(A+t) =m*(A), foranyt € R.

Proof: If{I,.},k = 1,2, ..., 00 is any collection of intervals, then {I} }
covers A if, and only if, {I,, + t},k = 1,2, ..., 00 covers A + t.

Notice also if I}, is an open interval, so is [, + t, and it has the same
length.

Thus, Yipeq L(I) = Y= LI + 1).

Ssom*(A+t) =m*(A).

Prop: m" is countably subadditive, i.e., if {Ex }, k = 1,2, ..., is

any countable collection of sets, disjoint or not, then:

m*(Ur=q1 Ex) < Xizam™(Eg).



Proof: If one of the E}’s has m*(E}) = o, then the inequality is
obviously true.

So assume m*(Ey,) is finite for all k.
Lete > 0.

For each k, there is a countable collection {Ik,j},j =1, ..., 00 of open

bounded intervals for which:
Ex € UL I and X724 1(Ikj) <m*(Ey) +2—Ek.
{Ik,j},j, k =1, ..., is a countable collection of open bounded intervals

that covers Uy~ E.

Thus:
m* (Ukz1 Ex) < Zi<k jcoo LUk j)
= Dk=1 Z?:l LIk, )
< Yima(m*(Ex) + 33

= Yr=ym (Ey) + €.

Since this holds for all e > 0,
m*(Up=1 Ex) < X=am”(Ey).

Clearly, finite subadditivity follows from countable subadditivity (just let
E, = ¢ fork > n).



