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                                                      Isomorphisms 

 

Def.  Let 𝑉 and 𝑊 be vector spaces, and let 𝑇: 𝑉 → 𝑊 be linear.  A function 

𝑈: 𝑊 → 𝑉 is said to be the inverse of 𝑻 if 𝑇𝑈 = 𝐼𝑊 and  𝑈𝑇 = 𝐼𝑉 .  If 𝑇 has an 

inverse, then 𝑇 is said to be invertible. 

If 𝑇 is invertible then the inverse of 𝑇 is unique and denoted 𝑇−1.  

 

Linear transformations are special cases of functions.  A function is invertible if 

and only if it is one-to-one and onto.  Thus we have: 

 

Theorem:  Let 𝑇: 𝑉 → 𝑊 be a linear transformation where dim(𝑉) = dim(𝑊)  

(both finite).  Then 𝑇 is invertible if and only if 𝑅𝑎𝑛𝑘(𝑇) = dim(𝑉). 

 

We saw earlier that when dim(𝑉) = dim(𝑊)  (both finite) then              

𝑅𝑎𝑛𝑘(𝑇) = dim(𝑉) is equivalent to 𝑇 being one-to-one and onto.  

 

The following holds for invertible functions 𝑇 and 𝑈. 

1.   (𝑇𝑈)−1 = 𝑈−1𝑇−1 

2.   (𝑇−1)−1 = 𝑇;    thus 𝑇−1 is invertible. 
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Ex.  Let 𝑇: ℝ2 → ℝ2 by 𝑇(< 𝑎1, 𝑎2 >) =< 𝑎1 + 2𝑎2, 𝑎1 + 𝑎2 > using the 

       standard ordered basis for ℝ2.  Show that 𝑇−1: ℝ2 → ℝ2 given by  

       𝑇−1(< 𝑏1, 𝑏2 >) =< −𝑏1 + 2𝑏2, 𝑏1 − 𝑏2 > is the inverse of 𝑇. 

 

𝑇−1𝑇(< 𝑎1, 𝑎2 >) = 𝑇−1(< 𝑎1 + 2𝑎2, 𝑎1 + 𝑎2 >)  

                              =< −(𝑎1 + 2𝑎2) + 2(𝑎1 + 𝑎2), (𝑎1 + 2𝑎2) − (𝑎1 + 𝑎2) > 

                              =< 𝑎1, 𝑎2 > . 

      𝑇𝑇−1(< 𝑏1, 𝑏2 >) = 𝑇(< −𝑏1 + 2𝑏2, 𝑏1 − 𝑏2 >) 

                            =< (−𝑏1 + 2𝑏2) + 2(𝑏1 − 𝑏2), (−𝑏1 + 2𝑏2) + (𝑏1 − 𝑏2) > 

                             =< 𝑏1, 𝑏2 >. 

     Thus 𝑇 and 𝑇−1 are inverses of eachother.  

 

 

 

Notice that if we represent 𝑇 and 𝑇−1 in the standard ordered basis 𝐵 we get: 

                          [𝑇]𝐵 = [
1 2
1 1

],                   [𝑇−1]𝐵 = [
−1    2
   1 −1

]  

and 

                          [𝑇]𝐵[𝑇−1]𝐵 = [
1 2
1 1

] [
−1   2

1 −1   
] = [

1 0
0 1

] = 𝐼2   

 

                          [𝑇−1]𝐵[𝑇]𝐵 = [
−1   2

1 −1   
] [

1 2
1 1

] = [
1 0
0 1

] = 𝐼2.  

 

 

 

 



3 
 

Theorem:  Let 𝑉 and 𝑊 be vector spaces and 𝑇: 𝑉 → 𝑊 be linear and invertible.  

Then 𝑇−1 is linear.  

 

Proof:  Let 𝑤1, 𝑤2 ∈ 𝑊 and 𝑐 ∈ ℝ. 

             Since 𝑇 is one-to-one and onto there exist unique vectors 𝑣1, 𝑣2 ∈ 𝑉 such  

             that      𝑇(𝑣1) = 𝑤1    and         𝑇(𝑣2) = 𝑤2  and thus 

                      𝑇−1(𝑤1) = 𝑣1    and    𝑇−1(𝑤2) = 𝑣2. 

              Therefore we have: 

                       𝑇−1(𝑐𝑤1 + 𝑤2) = 𝑇−1(𝑐𝑇(𝑣1) + 𝑇(𝑣2)) 

                                                     = 𝑇−1(𝑇(𝑐𝑣1 + 𝑣2)) 

                                                     = 𝑐𝑣1 + 𝑣2 

                                                     = 𝑐𝑇−1(𝑤1) + 𝑇−1(𝑤2)    and  𝑇−1 is linear. 

 

 

Def.  Let 𝐴 be an 𝑛 × 𝑛 matrix.  Then 𝐴 is invertible if there exists an 𝑛 × 𝑛  matrix  

𝐵  such that 𝐴𝐵 = 𝐵𝐴 = 𝐼. 
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Theorem:  Let 𝑉 and 𝑊 be finite dimensional vector spaces with ordered bases 𝐵1 

and 𝐵2.  Let  𝑇: 𝑉 → 𝑊 be linear.  Then 𝑇 is invertible if and only if [𝑇]𝐵1

𝐵2 is 

invertible.  Furthermore          [𝑇−1]𝐵2

𝐵1 = ([𝑇]𝐵1

𝐵2)
−1

. 

 

Proof:  Suppose 𝑇 is invertible.    

                      Then 𝑇 is one-to-one and onto thus 𝑁(𝑇) = 0 and 𝑅𝑎𝑛𝑘(𝑇) = dim(𝑉). 

             Let 𝑛 = dim(𝑊). 

              [𝑇]𝐵1

𝐵2 is an 𝑛 × 𝑛 matrix. 

              𝑇−1: 𝑊 → 𝑉 satisfies   𝑇𝑇−1 = 𝐼𝑊  and  𝑇−1𝑇 = 𝐼𝑉. 

              Thus we have: 

                       𝐼𝑛 = [𝐼𝑉]𝐵1
= [𝑇−1𝑇]𝐵1

= [𝑇−1]𝐵2

𝐵1[𝑇]𝐵1

𝐵2. 

              Similarly, we have     [𝑇]𝐵1

𝐵2 [𝑇−1]𝐵2

𝐵1 = 𝐼𝑛. 

               So [𝑇]𝐵1

𝐵2 is invertible and ([𝑇]𝐵1

𝐵2)
−1

= [𝑇−1]𝐵2

𝐵1. 

 

              Now suppose that 𝐴 = [𝑇]𝐵1

𝐵2  is invertible.   

              Then there is an 𝑛 × 𝑛 matrix 𝐶 such that 𝐴𝐶 = 𝐶𝐴 = 𝐼. 

              There exists a 𝑈 ∈ ℒ(𝑊, 𝑉) such that 

                                 𝑈(𝑤𝑗) = ∑ 𝐶𝑖𝑗𝑣𝑖
𝑛
𝑖=1       for 1 ≤ 𝑗 ≤ 𝑛, 

               where 𝐵1 = {𝑣1, … , 𝑣𝑛}  and  𝐵2 = {𝑤1, … , 𝑤𝑛} are ordered bases for 𝑉  

                and 𝑊.  Thus [𝑈]𝐵2

𝐵1 = 𝐶. 

               To see that 𝑈 = 𝑇−1 note that: 

                       [𝑈𝑇]𝐵1
= [𝑈]𝐵2

𝐵1[𝑇]𝐵1

𝐵2 = 𝐶𝐴 = 𝐼𝑛 = [𝐼𝑉]𝐵1
,  

               So 𝑈𝑇 = 𝐼𝑉 .    Similarly,  𝑇𝑈 = 𝐼𝑊. 
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Corollary:  Let 𝑉 be a finite dimensional vector space with ordered basis 𝐵 and let 

𝑇: 𝑉 → 𝑉 be linear.  Then 𝑇 is invertible if and only if [𝑇]𝐵 is invertible.  

Furthermore  [𝑇−1]𝐵 = ([𝑇]𝐵)−1. 

 

Def.  Let 𝑉 and 𝑊 be vector spaces.  We say 𝑽 is isomorphic to 𝑾 if there exists a 

linear transformation 𝑇: 𝑉 → 𝑊 that is invertible.  In this case 𝑇 is called an 

isomorphism. 

 

 

Ex.  Show that 𝑇: ℝ3 → 𝑃2(ℝ) by 𝑇(< 𝑎1, 𝑎2, 𝑎3 >) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑥2 is an  

       isomorphism. 

 

       We have already seen that 𝑇 is linear. 

        dim(ℝ3) = dim(𝑃2(ℝ)) = 3 and 𝑁(𝑇) = {0} so 𝑇 is one-to-one and onto. 

        Thus 𝑇 is invertible and an isomorphism. 

        The inverse map is: 

                    𝑇−1(𝑎1 + 𝑎2𝑥 + 𝑎3𝑥2) =< 𝑎1 , 𝑎2, 𝑎3 >. 

         A straight forward calculation shows that :    

                                    𝑇−1𝑇 = 𝐼ℝ3  

                                    𝑇𝑇−1 = 𝐼𝑃2(ℝ).      
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Theorem:  Let 𝑉 and 𝑊 be finite dimensional vector spaces.  Then 𝑉 is isomorphic 

to 𝑊 is and only if dim(𝑉) = dim(𝑊). 

 

Proof:  Suppose 𝑉 is isomorphic to 𝑊 and 𝑇: 𝑉 → 𝑊 is an isomorphism. 

             Since 𝑇 is one-to-one and onto dim(𝑉) = dim(𝑊). 

             

             Now let’s assume that dim(𝑉) = dim(𝑊) and show 𝑉 is isomorphic to 𝑊.  

 

             Let 𝐵1 = {𝑣1, … , 𝑣𝑛},    𝐵2 = {𝑤1, … , 𝑤𝑛} be ordered bases for 𝑉 and 𝑊 

             respectively. 

           We can define a linear transformation 𝑇: 𝑉 → 𝑊 by 𝑇(𝑣𝑖) = 𝑤𝑖,  1 ≤ 𝑖 ≤ 𝑛. 

             𝑅(𝑇) = 𝑠𝑝𝑎𝑛{𝑇(𝑣1), … , 𝑇(𝑣𝑛)} 

                       = 𝑠𝑝𝑎𝑛{𝑤1, … , 𝑤𝑛} 

                       = 𝑊. 

             So 𝑇 is onto. 

             Since dim(𝑉) = dim(𝑊),  𝑇 must also be one-to-one. 

             Hence 𝑇 is an isomorphism.   

 

Corollary:  Every vector space 𝑉 with dim(𝑉) = 𝑛 is isomorphic to ℝ𝑛. 

 

Ex.  By the previous corollary, 𝑀𝑛×𝑛(ℝ) is isomorphic to ℝ𝑛2
 since 

       dim(𝑀𝑛×𝑛(ℝ)) = 𝑛2.    
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Ex.  Find an isomorphism from 𝑆2×2(ℝ) = {[
𝑎 𝑏
𝑏 𝑑

] | 𝑎, 𝑏, 𝑑 ∈ ℝ} to ℝ3. 

     

       Let 𝑇: 𝑆2×2(ℝ) → ℝ3  by  𝑇 ([
𝑎 𝑏
𝑏 𝑑

]) =< 𝑎, 𝑏, 𝑑 >. 

       We need to show that 𝑇 is linear, one-to-one, and onto. 

     

        To show that 𝑇 is linear let  𝐴 = [
𝑎11 𝑎12

𝑎12 𝑎22
] ,  𝐵 = [

𝑏11 𝑏12

𝑏12 𝑏22
], and 𝑐 ∈ ℝ. 

                 𝑇(𝑐𝐴 + 𝐵) = 𝑇([
𝑐𝑎11 𝑐𝑎12

𝑐𝑎12 𝑐𝑎22
] + [

𝑏11 𝑏12

𝑏12 𝑏22
]) 

                                      = 𝑇([
𝑐𝑎11 + 𝑏11 𝑐𝑎12 + 𝑏12

𝑐𝑎12 + 𝑏12 𝑐𝑎22 + 𝑏22
]) 

                                      =< 𝑐𝑎11 + 𝑏11, 𝑐𝑎12 + 𝑏12, 𝑐𝑎22 + 𝑏22 >        

                                       = 𝑐 < 𝑎11, 𝑎12, 𝑎22 > +< 𝑏11, 𝑏12, 𝑏22 >    

                                       = 𝑐𝑇(𝐴) + 𝑇(𝐵). 

              So 𝑇 is linear.   

 

             To show that 𝑇 is one-to-one we show that 𝑁(𝑇) = {0}. 

          𝑇(𝐴) =< 𝑎11, 𝑎12, 𝑎22 >=< 0,0,0 >  ⟹     𝑎11 = 0,  𝑎12 = 0, 𝑎22 = 0. 

              Thus    𝐴 = [
0 0
0 0

],   and   𝑁(𝑇) = {0}. 

 

             To show that 𝑇 is onto, take any element < 𝑎, 𝑏, 𝑑 >∈ ℝ3 and let’s show 

             we can find  𝐴 ∈ 𝑆2×2(ℝ) such that 𝑇(𝐴) =< 𝑎, 𝑏, 𝑑 >. 

                      Let 𝐴 = [
𝑎 𝑏
𝑏 𝑑

],    then  𝑇(𝐴) =< 𝑎, 𝑏, 𝑑 >, and 𝑇 is onto.  

 

            Thus 𝑇 is an isomorphism of 𝑆2×2(ℝ) and ℝ3. 


