Composition of Linear Transformations

Theorem: Let V,W, and Z be vector spacesand letT:V - Wand U:W — Z be
linearthen U o T = UT:V — Zis linear.

Proof: Letu,v € V and ¢ € R then
UT(cu +v) = U(T(cu + v))
= U(cT(u) + T(v))
= U(cT(W)) + U(T(v))
= cU(T(W)) + U(T(v))
= cUT(u) + UT(v).
Thus UT is linear.

Theorem: Let V be a vector space. LetT,U;, U, € L(V) then
a. T(U; +U,) =TU; +TU, and (U; + U,)T = U;T + U,T
b. T(Ule) = (TU1)U2

c. TI=IT =T.

d. c(U Uy) = (cU;)U, = U;(cU,) foranyc € R.

Proof of a.: Let v € V then
(T(Uy + U))(w) =T U (v) + Uz (v))
=TU,(v) + TU,(v)
= (TU, + TU,)(v).
Similarly for (U; + U,)T = U;T + U,T.



LetT:V —- W and U: W — Z be linear transformations of vector spaces. The key
fact is that if we have matrix representations of T and U as A and C respectively,
then the matrix representation of the composition UT is CA. That is the matrix
product of C and A.

We can see this by letting B; = {vy, ..., v}, By = {wy, ...w,,,}, and
B; ={z,, ..., Zp} be ordered bases for V, W, and Z respectively. Thus for any
basis vector v; € V we have:

uT(v;) = U (T(v)) = UEIy Agwio)
= ket Aij(Wk)
= Y A XE_ Cizy)
= Y0 R CiAy)z;
= Li=1 Dijzi

where Dl] = 2221 CikAkj'

Def. Let C be anm X n matrixand A an n X p matrix. We define the product of
C and A to be

(CA)ij = Dk=1 CixArj forl<si<m, 1<j<p.

Thus if the matrix representation of T: V — W is A and the matrix representation
of U:W — Z is C then the matrix representation of UT:V — Z is CA.

Ex. Let T:R? —» R3 and U: R® —» R? be linear transformations defined by
T(< al, az >) =< 2a1 - az, az, az - 3a1 >
U(< bl' bz, b3 >) =< bl + bz + 2b3, b2 - 3b3 >

with respect to the standard ordered bases B, for R? and B, for R3. Find a
matrix representation of UT with respect to these bases.



We saw in an earlier example that

2 -1
[T]gi=l 0o 1 ]

3 1

To find the matrix representation of U notice that
U(<1,00>)=<1,0>
U<010>)=<11>
U(<001>)=<2,-3>,

B,

Thus wip=[ 1 %]

2 -1
So we have: [UT]E: (1) 1 _g ][ 0 1 ]

Notice that we can also calculate this by directly finding a matrix representation
of U o T from the formulas for T(< a,, a, >) and U(< by, by, b3 >).

UoT(Kaq,a,>)=UT( ay,ay; >)
= UL 2a; —a,, a,, a,—3a; >)
=< 2a, — a, + a, + 2(a, — 3a,), a, — 3(a, — 3a,) >
=< —4a, + 2a,, 9a; — 2a, >.

Thus we have:

UoT(<10>) =< —4,9> werly =" 5]

UoT(<01>) =<2, -2>



Ex. Let U: P3(R) = P,(R) and T: P,(R) = P3(R) be linear transformations
defined by U(p(x)) = p'(x) and T(q(x)) = fOx q(t)dt. Let B, and B, be
the standard bases for P;(R) and P,(RR) respectively. Find the matrix
representation of UT: P,(R) - P,(R) and TU: P;(R) — P;(R).

Let’s first find the matrix representations of T and U.

B, ={1,x,x%x3}, B, ={1,x,x?}.

T:P,(R) - P;(R) by T(q(x)) = [; q()dt,
T(1) = [, 1dt =x = 0(1) + 1(x) + 0(x?) + 0(x3)
T(x) = [ tdt ==(x?) = 0(1) +0(x) +5 (x?) + 0(x*)

T(x?) = [ t2de = G)x3 = 0(1) + 0(x) + 0(x?) + (%)

0O 0 O

B, [1 0 O]
= [T]p, = lo % (1)|.
lo 0 §J

U: P3(R) - P,(R) by U(p(x)) =p'(x), By ={1,x,x2x5%}.
U1)=0= 001)+0(x)+ 0(x?)

U)=1= 1(1)+0(x) + 0(x?)

U(x?) =2x =0(1) + 2(x) + 0(x?)

U(x3) =3x2=0(1) + 0(x) + 3(x?)

= [U]§j=[o 0 2 ol
0
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Def. The Kronecker delta, §;;, is defined by

=0 ifi#].

The n X n identity matrix [,, is defined by
(In)ij = 6y

For example:

1 0 O
L =[1], I, = [(1) (1) ) I3 = [0 1 O] , etc.
0 0 1

Theorem: Let A be an m X n matrix, B and C be n X p matricesand D and E
g X m matrices. Then

a. ABB+C)=AB+AC and (D +E)A=DA + EA.
c(AB) = (cA)B = A(¢cB), c€R.
I.(A) = A = A(l,)

o

o

d. if Vis an n-dimensional vector space with ordered basis 8, then [I,]; = I,.



All of these results follow from straight forward matrix calculations.

Corollary: Let A be an m X n matrix, B4, ..., B n X p matrices, Cy, ...,C, g Xm
matrices and a4, ..., a; € R, then

ACK  a;B) =XF  a;AB; and
CEiaC)A=Y a;CA.

Def. For an n X n matrix A we define

Al=4

A2 = A(A)

A3 = A%(4)
Ak = Ak=1(4).

Notice that unlike real numbers, if 4 is a matrix and A% = 0 (ie the zero matrix)

It does not imply that A = 0. For example if A = [8 (1)] then

= olly ol=ls of



Theorem: Let VV and W be finite dimensional vector spaces with ordered bases B,
and B, respectively and let T: V — W be linear. Then for u € V, we have

[TW)]s, = [T152[uls,.

Proof: Fixu € VandletU:R =V by U(c) = cu.

Notice that U(1) = u.

A
So the matrix representation of U is [ ! | whereu = A4yv; + -+ A,v,.
An
B
Now TU(1) = T(u) and [T(u)]p, = [T]Bi [ulp,.

In other words, if we have a matrix representation of a linear transformation T of
I into W, then to calculate T (u) for u € V, we multiply the matrix representation
of Twith the column vector u = A;v; + -+ 1,1,

Ex. Let T:R%? - R3 begiven T(< ay,a, >) =< 2a, — a,, a,, a, — 3a; >
with respect to the standard ordered bases B, for R? and B, for R3. Find
T'(u) where u =< 5,2 > by matrix multiplication.

We saw in an earlier example that the matrix representation of T is given by

2 -1
[ﬂ§=[o ]l

3 1

[ulg, = [g], so we have:

2 -1 . 8
[T(W]s, = [T152[ul, = [ 0 1 ][2] = [ 2 ]
-3 1 ~13



Ex. Let T: P3(R) - Py (R) by T(p(x)) = p’(x). Find T(3 + 3x — x% + 2x%)

through matrix multiplication (assume the standard ordered bases).

From an earlier example we know that

010 0
[T]p2 = [0020‘

0O 0 0 3
3
[3+3x—x2+2x3]31=[_i \, so we have:
2
01 0 O g
[T(3+3x—x2+2x3)]52— O 0 2 O] _1 [ ]
0 0 0 3 2

So T(B+3x—x2+2x3)=31)-2(x)+6(x%) =3-2x+ 6x2.



