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                                         Composition of Linear Transformations  

 

Theorem:  Let 𝑉,𝑊,  and 𝑍 be vector spaces and let 𝑇: 𝑉 → 𝑊 and 𝑈:𝑊 → 𝑍 be 

linear then 𝑈 ∘ 𝑇 = 𝑈𝑇: 𝑉 → 𝑍 is linear. 

 

Proof:  Let 𝑢, 𝑣 ∈ 𝑉 and 𝑐 ∈ ℝ then 

                 𝑈𝑇(𝑐𝑢 + 𝑣) = 𝑈(𝑇(𝑐𝑢 + 𝑣)) 

                                        = 𝑈(𝑐𝑇(𝑢) + 𝑇(𝑣)) 

                                        = 𝑈(𝑐𝑇(𝑢)) + 𝑈(𝑇(𝑣)) 

                                        = 𝑐𝑈(𝑇(𝑢)) + 𝑈(𝑇(𝑣)) 

                                        = 𝑐𝑈𝑇(𝑢) + 𝑈𝑇(𝑣). 

              Thus 𝑈𝑇 is linear. 

 

Theorem:  Let 𝑉 be a vector space.  Let 𝑇, 𝑈1, 𝑈2 ∈ ℒ(𝑉) then 

a.  𝑇(𝑈1 + 𝑈2) = 𝑇𝑈1 + 𝑇𝑈2   and   (𝑈1 + 𝑈2)𝑇 = 𝑈1𝑇 + 𝑈2𝑇 

b.  𝑇(𝑈1𝑈2) = (𝑇𝑈1)𝑈2 

c.  𝑇𝐼 = 𝐼𝑇 = 𝑇. 

d.  𝑐(𝑈1𝑈2) = (𝑐𝑈1)𝑈2 = 𝑈1(𝑐𝑈2)   for any 𝑐 ∈ ℝ. 

 

Proof of a.:  Let 𝑣 ∈ 𝑉 then 

   (𝑇(𝑈1 + 𝑈2))(𝑣) = 𝑇(𝑈1(𝑣) + 𝑈2(𝑣)) 

                                   = 𝑇𝑈1(𝑣) + 𝑇𝑈2(𝑣) 

                                   = (𝑇𝑈1 + 𝑇𝑈2)(𝑣).       

 Similarly for (𝑈1 + 𝑈2)𝑇 = 𝑈1𝑇 + 𝑈2𝑇. 
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Let 𝑇: 𝑉 → 𝑊 and 𝑈:𝑊 → 𝑍 be linear transformations of vector spaces.  The key 

fact is that if we have matrix representations of 𝑇 and 𝑈 as 𝐴 and 𝐶 respectively, 

then the matrix representation of the composition 𝑈𝑇 is 𝐶𝐴.  That is the matrix 

product of 𝐶 and 𝐴.  

We can see this by letting 𝐵1 = {𝑣1, … , 𝑣𝑛},  𝐵2 = {𝑤1, …𝑤𝑚}, and                     

𝐵3 = {𝑧1, … , 𝑧𝑝} be ordered bases for 𝑉,𝑊, and 𝑍 respectively.  Thus for any 

basis vector 𝑣𝑗 ∈ 𝑉 we have: 

        𝑈𝑇(𝑣𝑗) = 𝑈 (𝑇(𝑣𝑗)) = 𝑈(∑ 𝐴𝑘𝑗𝑤𝑘)
𝑚
𝑘=1  

                                                = ∑ 𝐴𝑘𝑗𝑈(𝑤𝑘)
𝑚
𝑘=1  

                                                = ∑ 𝐴𝑘𝑗(∑ 𝐶𝑖𝑘𝑧𝑖)
𝑝
𝑖=1

𝑚
𝑘=1  

                                                = ∑ (∑ 𝐶𝑖𝑘𝐴𝑘𝑗)𝑧𝑖
𝑚
𝑘=1

𝑝
𝑖=1  

                                                 = ∑ 𝐷𝑖𝑗𝑧𝑖
𝑝
𝑖=1  

      where 𝐷𝑖𝑗 = ∑ 𝐶𝑖𝑘𝐴𝑘𝑗
𝑚
𝑘=1 . 

 

Def.  Let 𝐶 be an 𝑚 × 𝑛 matrix and 𝐴 an 𝑛 × 𝑝 matrix.  We define the product of 

𝑪 and 𝑨 to be 

                               (𝐶𝐴)𝑖𝑗 = ∑ 𝐶𝑖𝑘𝐴𝑘𝑗
𝑚
𝑘=1      for 1 ≤ 𝑖 ≤ 𝑚,   1 ≤ 𝑗 ≤ 𝑝. 

 

Thus if the matrix representation of 𝑇: 𝑉 → 𝑊 is 𝐴 and the matrix representation 

of 𝑈:𝑊 → 𝑍 is 𝐶 then the matrix representation of 𝑈𝑇: 𝑉 → 𝑍 is 𝐶𝐴. 

 

Ex.  Let 𝑇:ℝ2 → ℝ3 and 𝑈: ℝ3 → ℝ2 be linear transformations defined by 

               𝑇(< 𝑎1, 𝑎2 >) =< 2𝑎1 − 𝑎2, 𝑎2,  𝑎2 − 3𝑎1 > 

          𝑈(< 𝑏1, 𝑏2, 𝑏3 >) =< 𝑏1 + 𝑏2 + 2𝑏3, 𝑏2 − 3𝑏3 > 

         with respect to the standard ordered bases 𝐵1 for ℝ2 and 𝐵2 for ℝ3.  Find a 

          matrix representation of 𝑈𝑇 with respect to these bases. 
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We saw in an earlier example that  

                        [𝑇]𝐵1

𝐵2 = [
2 −1   
0 1

−3   1
]. 

 

To find the matrix representation of 𝑈 notice that 

𝑈(< 1,0,0 >) =< 1,0 >  

𝑈(< 0,1,0 >) =< 1,1 >  

𝑈(< 0,0,1 >) =< 2,−3 > , 

Thus                [𝑈]𝐵2

𝐵1 = [
1 1 2
0 1 −3   

]. 

So we have:   [𝑈𝑇]𝐵1

𝐵1 = [
1 1 2
0 1 −3   

] [
  2 −1   
  0 1
−3 1

] 

 

                                       = [
−4   2

9 −2   
].         

 

Notice that we can also calculate this by directly finding a matrix representation 

of 𝑈 ∘ 𝑇 from the formulas for 𝑇(< 𝑎1, 𝑎2 >)  and 𝑈(< 𝑏1, 𝑏2, 𝑏3 >). 

 𝑈 ∘ 𝑇(< 𝑎1, 𝑎2 >) = 𝑈(𝑇(< 𝑎1, 𝑎2 >) 

                                   = 𝑈(< 2𝑎1 − 𝑎2,  𝑎2,   𝑎2 − 3𝑎1 >) 

                                   =< 2𝑎1 − 𝑎2 + 𝑎2 + 2(𝑎2 − 3𝑎1),  𝑎2 − 3(𝑎2 − 3𝑎1) > 

                                   =< −4𝑎1 + 2𝑎2, 9𝑎1 − 2𝑎2 >. 

Thus we have: 

     𝑈 ∘ 𝑇(< 1,0 >) =< −4, 9 >                    [𝑈 ∘ 𝑇 ]𝐵1

𝐵1 = [
−4   2

9 −2   
].         

     𝑈 ∘ 𝑇(< 0,1 >) =< 2, −2 >                   
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Ex.  Let 𝑈: 𝑃3(ℝ) → 𝑃2(ℝ)  and 𝑇: 𝑃2(ℝ) → 𝑃3(ℝ)  be linear transformations  

       defined by 𝑈(𝑝(𝑥)) = 𝑝′(𝑥) and  𝑇(𝑞(𝑥)) = ∫ 𝑞(𝑡)𝑑𝑡
𝑥

0
.  Let 𝐵1 and 𝐵2 be  

       the standard bases for  𝑃3(ℝ) and 𝑃2(ℝ)  respectively.  Find the matrix  

       representation of 𝑈𝑇: 𝑃2(ℝ) → 𝑃2(ℝ) and 𝑇𝑈: 𝑃3(ℝ) → 𝑃3(ℝ). 

 

       Let’s first find the matrix representations of 𝑇 and 𝑈. 

        𝐵1 = {1, 𝑥, 𝑥2, 𝑥3},       𝐵2 = {1, 𝑥, 𝑥2}.   

 

       𝑇: 𝑃2(ℝ) → 𝑃3(ℝ)   by    𝑇(𝑞(𝑥)) = ∫ 𝑞(𝑡)𝑑𝑡
𝑥

0
,    

       𝑇(1) = ∫ 1𝑑𝑡 = 𝑥 =            0(1) + 1(𝑥)
𝑥

0
+ 0(𝑥2) + 0(𝑥3)   

       𝑇(𝑥) = ∫ 𝑡𝑑𝑡 =
1

2
(𝑥2) =     0(1) + 0(𝑥) +

1

2
(𝑥2) + 0(𝑥3)

𝑥

0
 

       𝑇(𝑥2) = ∫ 𝑡2𝑑𝑡 = (
1

3
) 𝑥3 = 0(1) + 0(𝑥) + 0(𝑥2) +

1

3
(𝑥3)

𝑥

0
          

                                               ⟹           [𝑇]𝐵2

𝐵1 =

[
 
 
 
0 0 0
1 0 0

0
0

1

2

0

0
1

3]
 
 
 
. 

 

         𝑈:𝑃3(ℝ) → 𝑃2(ℝ)  by  𝑈(𝑝(𝑥)) = 𝑝′(𝑥),     𝐵1 = {1, 𝑥, 𝑥2, 𝑥3}. 

         𝑈(1) = 0 =     0(1) + 0(𝑥) + 0(𝑥2) 

         𝑈(𝑥) = 1 =     1(1) + 0(𝑥) + 0(𝑥2) 

         𝑈(𝑥2) = 2𝑥 = 0(1) + 2(𝑥) + 0(𝑥2) 

         𝑈(𝑥3) = 3𝑥2 = 0(1) + 0(𝑥) + 3(𝑥2)                                                         

                                                   ⟹             [𝑈]𝐵1

𝐵2 = [
0 1 0 0
0 0 2 0
0 0 0 3

]. 
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          [𝑈𝑇]𝐵2

𝐵2 = [
0 1 0 0
0 0 2 0
0 0 0 3

]

[
 
 
 
0 0 0
1 0 0

0
0

1

2

0

0
1

3]
 
 
 
= [

1 0 0
0 1 0
0 0 1

]. 

         [𝑇𝑈]𝐵1

𝐵1 =

[
 
 
 
0 0 0
1 0 0

0
0

1

2

0

0
1

3]
 
 
 
[
0 1 0 0
0 0 2 0
0 0 0 3

] = [

0 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

].  

 

Def.  The Kronecker delta, 𝛿𝑖𝑗, is defined by 

                                 𝛿𝑖𝑗 = 1       if 𝑖 = 𝑗 

                                       = 0       if 𝑖 ≠ 𝑗. 

      

The 𝑛 × 𝑛 identity matrix 𝐼𝑛 is defined by 

                                 (𝐼𝑛)𝑖𝑗 = 𝛿𝑖𝑗 .         

 For example: 

      𝐼1 = [1],         𝐼2 = [
1 0
0 1

],        𝐼3 = [
1 0 0
0 1 0
0 0 1

] ,  etc. 

 

Theorem:  Let 𝐴 be an 𝑚 × 𝑛 matrix, 𝐵 and 𝐶 be 𝑛 × 𝑝 matrices and 𝐷 and 𝐸    

𝑞 × 𝑚 matrices.  Then 

a.    𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶      and      (𝐷 + 𝐸)𝐴 = 𝐷𝐴 + 𝐸𝐴. 

b.    𝑐(𝐴𝐵) = (𝑐𝐴)𝐵 = 𝐴(𝑐𝐵),       𝑐 ∈ ℝ. 

c.     𝐼𝑚(𝐴) = 𝐴 = 𝐴(𝐼𝑛) 

d.     if 𝑉 is an 𝑛-dimensional vector space with ordered basis  𝛽,  then [𝐼𝑉]𝛽 = 𝐼𝑛. 
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All of these results follow from straight forward matrix calculations. 

 

Corollary:  Let 𝐴 be an 𝑚 × 𝑛 matrix, 𝐵1, … , 𝐵𝑘  𝑛 × 𝑝 matrices, 𝐶1, … , 𝐶𝑘  𝑞 × 𝑚 

matrices and 𝑎1, … , 𝑎𝑘 ∈ ℝ, then 

                          𝐴(∑ 𝑎𝑖𝐵𝑖) = ∑ 𝑎𝑖𝐴𝐵𝑖
𝑘
𝑖=1

𝑘
𝑖=1            and 

                          (∑ 𝑎𝑖𝐶𝑖)𝐴 = ∑ 𝑎𝑖𝐶𝑖𝐴
𝑘
𝑖=1 .𝑘

𝑖=1  

 

 

Def.  For an 𝑛 × 𝑛 matrix 𝐴 we define 

                           𝐴1 = 𝐴 

                           𝐴2 = 𝐴(𝐴) 

                           𝐴3 = 𝐴2(𝐴) 

                                 ⋮ 

                            𝐴𝑘 = 𝐴𝑘−1(𝐴). 

 

Notice that unlike real numbers, if 𝐴 is a matrix and 𝐴2 = 0  (ie the zero matrix) 

It does not imply that 𝐴 = 0.  For example if 𝐴 = [
0 1
0 0

]  then 

                            𝐴2 = [
0 1
0 0

] [
0 1
0 0

] = [
0 0
0 0

].       
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Theorem:  Let 𝑉 and 𝑊 be finite dimensional vector spaces with ordered bases 𝐵1 

and 𝐵2 respectively and let 𝑇: 𝑉 → 𝑊 be linear. Then for 𝑢 ∈ 𝑉, we have 

                                [𝑇(𝑢)]𝐵2
= [𝑇]𝐵1

𝐵2[𝑢]𝐵1
.  

 

Proof:  Fix 𝑢 ∈ 𝑉 and let 𝑈: ℝ → 𝑉  by  𝑈(𝑐) = 𝑐𝑢. 

             Notice that 𝑈(1) = 𝑢. 

             So the matrix representation of 𝑈 is   [
𝜆1

⋮
𝜆𝑛

] where 𝑢 = 𝜆1𝑣1 + ⋯+ 𝜆𝑛𝑣𝑛. 

             Now 𝑇𝑈(1) = 𝑇(𝑢) and   [𝑇(𝑢)]𝐵2
= [𝑇]𝐵1

𝐵2[𝑢]𝐵1. 

 

In other words, if we have a matrix representation of a linear transformation 𝑇 of 

𝑉 into 𝑊, then to calculate 𝑇(𝑢) for 𝑢 ∈ 𝑉, we multiply the matrix representation 

of 𝑇with the column vector 𝑢 = 𝜆1𝑣1 + ⋯+ 𝜆𝑛𝑣𝑛. 

 

Ex.  Let 𝑇:ℝ2 → ℝ3 be given 𝑇(< 𝑎1, 𝑎2 >) =< 2𝑎1 − 𝑎2, 𝑎2,  𝑎2 − 3𝑎1 > 

        with respect to the standard ordered bases 𝐵1 for ℝ2 and 𝐵2 for ℝ3.  Find 

        𝑇(𝑢) where  𝑢 =< 5,2 > by matrix multiplication.   

 

        We saw in an earlier example that the matrix representation of 𝑇 is given by 

                        [𝑇]𝐵1

𝐵2 = [
2 −1   
0 1

−3   1
]. 

       [𝑢]𝐵1
= [

5
2
],    so we have:        

   

                       [𝑇(𝑢)]𝐵2
= [𝑇]𝐵1

𝐵2[𝑢]𝐵1
= [

2 −1   
0 1

−3   1
] [

5
2
] = [

8
2

−13   
].                                                                             
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Ex.  Let 𝑇: 𝑃3(ℝ) → 𝑃2(ℝ)  by 𝑇(𝑝(𝑥)) = 𝑝′(𝑥).   Find 𝑇(3 + 3𝑥 − 𝑥2 + 2𝑥3)  

       through matrix multiplication (assume the standard ordered bases).   

 

      From an earlier example we know that  

                                 [𝑇]𝐵1

𝐵2 = [
0 1 0 0
0 0 2 0
0 0 0 3

]. 

       [3 + 3𝑥 − 𝑥2 + 2𝑥3]𝐵1
= [

3
3

−1   
2

],   so we have: 

                 [𝑇(3 + 3𝑥 − 𝑥2 + 2𝑥3)]𝐵2
= [

0 1 0 0
0 0 2 0
0 0 0 3

] [

3
3

−1   
2

] = [
3

−2   
6

].    

  

         So     𝑇(3 + 3𝑥 − 𝑥2 + 2𝑥3) = 3(1) − 2(𝑥) + 6(𝑥2) = 3 − 2𝑥 + 6𝑥2.       


