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                      The Matrix Representation of a Linear Transformation 

 

Def.  Let 𝑉 be a finite dimensional vector space.  An ordered basis for 𝑽 is a basis for 𝑉 

with a specific order. 

 

Ex.  In ℝ3 let 𝐵 = {𝑒1, 𝑒2, 𝑒3} where 𝑒1 =< 1,0,0 >, 𝑒2 =< 0,1,0 >,                        

        𝑒3 =< 0,0,1 >. 

       𝐵 is called the standard ordered basis for ℝ3. 

       𝐶 = {𝑒2, 𝑒1, 𝑒3} is a different ordered basis for ℝ3. 

       Even though 𝐵 and 𝐶 contain the same basis vectors, they appear in different 

       orders in each set. 

 

As we will see shortly, when we express vectors in terms of a basis, the order of the 

basis matters. 

Just as 𝑒1, 𝑒2, … , 𝑒𝑛 is the standard ordered basis for ℝ𝑛,  {1, 𝑥, 𝑥2, … , 𝑥𝑛} is the 

standard ordered basis for 𝑃𝑛(ℝ). 

 

Def.  Let 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛} be an ordered basis for a finite dimensional vector space 

𝑉.  For 𝑣 ∈ 𝑉,  let 𝑎1, … , 𝑎𝑛 be the unique real numbers such that 

                                             𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛. 

we define the coordinate vector of 𝒗 relative to 𝐵 by 

                                                   [𝑣]𝐵 = [

𝑎1

⋮
𝑎𝑛

]. 
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Ex.  𝐵 = {𝑣1, 𝑣2, 𝑣3} = {𝑒1, 𝑒2, 𝑒3} and 𝐵′ = {𝑤1, 𝑤2, 𝑤3} = {𝑒2, 𝑒1, 𝑒3} are ordered bases 

for ℝ3 . The vector 𝑣 =< 5, −3,2 > is  given by:  

                         < 5, −3,2 >= 5𝑒1 − 3𝑒2 + 2𝑒3 

                                               = 5𝑣1 − 3𝑣2 + 2𝑣3.  

 

Thus we have:          [𝑣]𝐵 = [
 5

−3  
  2

].     

 

On the other hand:  

                            < 5, −3,2 >= 5𝑒1 − 3𝑒2 + 2𝑒3  

                                                  = −3𝑤1 + 5𝑤2 + 2𝑤3.  

 

Which gives us:       [𝑣]𝐵′ = [
−3
   5 
   2

] .       

 

 

Ex.   Let 𝑉 = 𝑃2(ℝ) and 𝐵 = {𝑣1, 𝑣2, 𝑣3} = {1, 𝑥, 𝑥2},   𝐵′ = {𝑤1, 𝑤2, 𝑤3} = {𝑥2, 𝑥, 1}  

        ordered bases for 𝑉. Then 

         𝑓(𝑥) = 3 − 4𝑥 + 5𝑥2 is represented by:  

         𝑓(𝑥) = 3 − 4𝑥 + 5𝑥2 = 3𝑣1 − 4𝑣2 + 5𝑣3       ⟹           [𝑓]𝐵 = [
 3

−4  
  5

] . 

         𝑓(𝑥) = 3 − 4𝑥 + 5𝑥2 = 5𝑤1 − 4𝑤2 + 3𝑤3      ⟹          [𝑓]𝐵′ = [
 5

−4  
  3

] .      
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Let 𝑉 and 𝑊 be finite dimensional vector spaces with ordered bases  

𝐵 = {𝑣1 , … , 𝑣𝑛} and 𝐶 = {𝑤1, … , 𝑤𝑚 } respectively.  

Let 𝑇: 𝑉 → 𝑊 be linear. 

Then for each 𝑗, 1 ≤ 𝑗 ≤ 𝑛 there exists a unique set of real numbers                                      

𝑎𝑖𝑗 ∈ ℝ,    1 ≤ 𝑖 ≤ 𝑚 such that 

               𝑇(𝑣𝑗) = 𝑎1𝑗𝑤1 + 𝑎2𝑗𝑤2 + ⋯ + 𝑎𝑚𝑗𝑤𝑚;       1 ≤ 𝑗 ≤ 𝑛. 

 

Def.  We call the 𝑚 × 𝑛 matrix 𝐴 defined by 

                             𝐴 = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] 

the matrix representation of 𝑻 in the ordered bases 𝑩 and 𝑪 and write 

                                        𝐴 = [𝑇]𝐵
𝐶 . 

 

If 𝑉 = 𝑊 and 𝐵 = 𝐶 we write 𝐴 = [𝑇]𝐵 . 

 

Notice that the 𝑗𝑡ℎ column of 𝐴 is simply [𝑇(𝑣𝑗)]
𝐶

: 

                               𝐴 = [𝑇]𝐵
𝐶 = [𝑇(𝑣1) 𝑇(𝑣2) ⋯ 𝑇(𝑣𝑛)]. 
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Ex.  Let 𝑇: ℝ2 → ℝ3 be the linear transformation defined by  

                                𝑇(< 𝑎1, 𝑎2 >) =< 𝑎1 − 2𝑎2, 0, 3𝑎1 + 2𝑎2 >. 

        Find the matrix represenation of 𝑇 with repsect to the standard ordered basis 

        For ℝ2 and ℝ3. 

 

       So if    𝑉 = ℝ2        and         𝑊 = ℝ3 

                𝑣1 =< 1,0 >              𝑤1 =< 1,0,0 > 

                𝑣2 =< 0,1 >              𝑤2 =< 0,1,0 > 

                                                      𝑤3 =< 0,0,1 >.  

 

       Thus 𝐵 = {𝑣1, 𝑣2} and 𝐶 = {𝑤1, 𝑤2, 𝑤3}.   

 

       𝑇(𝑣1) = 𝑇(< 1,0 >) =< 1,0,3 > =        𝑤1 + 0𝑤2 + 3𝑤3 

       𝑇(𝑣2) = 𝑇(< 0,1 >) =< −2,0,2 > = −2𝑤1 + 0𝑤2 + 2𝑤3. 

 

       Hence we have: 

                       [𝑇]𝐵
𝐶 = [𝑇(𝑣1) 𝑇(𝑣2)] = [

1 −2  
0 0
3 2

].  

 

      If we change the order of the basis in 𝑉 = ℝ2 to {𝑣2, 𝑣1} and call this new  

      ordered basis 𝐵′, then the matrix representation of 𝑇 becomes:              

                       [𝑇]
𝐵′
𝐶 = [𝑇(𝑣2) 𝑇(𝑣1)] = [

−2  1
0 0
2 3

].     
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      If we let 𝐵 be the basis for 𝑉 = ℝ2 and let                                                                         

      𝐶′ = {𝑢1, 𝑢2, 𝑢3} = {< 0,0,1 >, < 0,1,0 >, < 1,0,0 >} then  

 

                𝑇(𝑣1) = 𝑇(< 1,0 >) =< 1,0,3 > =    3𝑢1 + 0𝑢2 + 𝑢3 

                𝑇(𝑣2) = 𝑇(< 0,1 >) =< −2,0,2 > = 2𝑢1 + 0𝑢2 − 2𝑢3.  

 

So we get: 

                        [𝑇]𝐵
𝐶′

= [𝑇(𝑣1) 𝑇(𝑣2)] = [
 3    2
 0    0

   1  −2
].           

 

Ex.   Let 𝑇: 𝑃3(ℝ) → 𝑃2(ℝ) be the linear transformation defined by            

         𝑇(𝑝(𝑥)) = 𝑝′(𝑥) + 𝑝(0).  Let 𝐵 and 𝐶 be the standard ordered bases for 

        𝑃3(ℝ) and 𝑃2(ℝ)  respectively.  Find the matrix representation of 𝑇. 

 

        The standard ordered basis for 𝑃3(ℝ) is: 

                     𝑣1 = 1,     𝑣2 = 𝑥,     𝑣3 = 𝑥2,     𝑣4 = 𝑥3.   

 

        The standard ordered basis for 𝑃2(ℝ) is: 

                     𝑤1 = 1,    𝑤2 = 𝑥,    𝑤3 = 𝑥2.  

 

         𝑇(𝑣1) = 𝑇(1) = 1 =      1(1) + 0(𝑥) + 0(𝑥2) 

         𝑇(𝑣2) = 𝑇(𝑥) = 1 =      1(1) + 0(𝑥) + 0(𝑥2) 

         𝑇(𝑣3) = 𝑇(𝑥2) = 2𝑥 =  0(1) + 2(𝑥) + 0(𝑥2) 

         𝑇(𝑣4) = 𝑇(𝑥3) = 3𝑥2 = 0(1) + 0(𝑥) + 3(𝑥2). 
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     Thus we have: 

                              [𝑇]𝐵
𝐶 = [

1 1 0 0
0 0 2 0
0 0 0 3

].  

 

Ex.  Let 𝑉 = ℝ2 and 𝑊 = ℝ2, each with the standard ordered basis 𝐵 (so 𝐶 = 𝐵). 

        𝑇: 𝑉 → 𝑊  by  𝑇(< 𝑎1, 𝑎2 >) =< 4𝑎1 + 6𝑎2, −4𝑎1 + 2𝑎2 >. 

        a.  Find the matrix representation of 𝑇. 

        b.  Suppose 𝑉 has the standard ordered basis but 𝑊 has the ordered basis 

        𝐶′ = {𝑤1, 𝑤2} = {< 1, 1 >, < 3, −1 >}.  Find the matrix representation of 𝑇. 

 

           a.  Since 𝑉 and 𝑊 both have the standard ordered basis we have: 

                              𝑣1 =< 1,0 >            𝑤1 =< 1,0 >         

                              𝑣2 =< 0,1 >            𝑤2 =< 0,1 >.  

 

         𝑇(𝑣1) = 𝑇(< 1,0 >) =< 4, −4 >;       𝑇(𝑣2) =  𝑇(< 0,1 >) =< 6, 2 >. 

                                             [𝑇]𝐵 = [
4 6

−4   2
].      

 

           b.  𝑇(< 1,0 >) =< 4, −4 >  and 𝑇(< 0,1 >) =< 6,2 > with respect to the 

                 standard ordered basis for both 𝑉 and 𝑊.  That is 

                             < 4, −4 >= 4𝑒1 − 4𝑒2 = 4 < 1, 0 > −4 < 0,1 > 

                                 < 6, 2 >= 6𝑒1 + 2𝑒2 = 6 < 1, 0 > +2 < 0, 1 >. 

 

                   Now we need to express < 4, −4 > and < 6,2 > in terms of the new  

                   basis vectors 𝐶′ = {𝑤1′, 𝑤2′} = {< 1, 1 >, < 3, −1 >}. 
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               𝑇(𝑣1) =< 4, −4 >= 𝑎1𝑤1′ + 𝑎2𝑤2′ = 𝑎1 < 1, 1 > +𝑎2 < 3, −1 >,    

                   so we need to solve         4 = 𝑎1 + 3𝑎2 

                                                        −4 =  𝑎1 − 𝑎2. 

                    Solving these simultaneous equations we get:  𝑎1 = −2,   𝑎2 = 2. 

                    That is, we have:    

                  𝑇(𝑣1) =< 4, −4 >= −2 < 1, 1 > +2 < 3, −1 >= −2𝑤1
′ + 2𝑤2′. 

 

                    Similarly, 

                    𝑇(𝑣2) =< 6, 2 >= 𝑎1𝑤1′ + 𝑎2𝑤2′ = 𝑎1 < 1, 1 > +𝑎2 < 3, −1 >,    

                    so we need to solve:               6 = 𝑎1 + 3𝑎2 

                                                                   2 = 𝑎1   − 𝑎2.  

 

                    Solving these simultaneous equations we get:  𝑎1 = 3,   𝑎2 = 1. 

                     That is, we have:    

                   𝑇(𝑣2) =< 6, 2 >= 3 < 1, 1 > +1 < 3, −1 >= 3𝑤1
′ + 𝑤2′. 

 

So with respect to the ordered bases 𝐵 = {𝑣1, 𝑣2} = {< 1, 0 >, < 0,1 >} for 𝑉 and   

𝐶′ = {𝑤1
′ , 𝑤2′} = {< 1, 1 >, < 3, −1 >} for 𝑊 we have:  

 

      𝑇(𝑣1) =< 4, −4 >= −2 < 1, 1 > +2 < 3, −1 >= −2𝑤1
′ + 2𝑤2′. 

      𝑇(𝑣2) =< 6, 2 >=   3 < 1, 1 > +1 < 3, −1 > =        3𝑤1
′ + 𝑤2′.             

                     

Thus 𝑇 has the matrix representation: 

                                             [𝑇]𝐵
𝐶′

= [
−2  3

 2 1
].     
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Ex.    Again let 𝑉 = ℝ2 and 𝑊 = ℝ2 and 𝑇: 𝑉 → 𝑊  by  

         𝑇(< 𝑎1, 𝑎2 >) =< 4𝑎1 + 6𝑎2, −4𝑎1 + 2𝑎2 >.  

 

a.    Find the matrix representation of 𝑇 if 𝑉 has the ordered basis  

   𝐵′ = {𝑣1′, 𝑣2′} = {< 2, 1 >, < −1, 2 >} and 𝑊 has the standard ordered basis B. 

 

b.    Find the matrix representation of 𝑇 if 𝑉 has the ordered basis  

     𝐵′ = {𝑣1′, 𝑣2′} = {< 2, 1 >, < −1, 2 >} and 𝑊 has the ordered basis 

     𝐶′ = {𝑤1
′ , 𝑤2′} = {< 1, 1 >, < 3, −1 >}.   

 

a.        So the ordered bases for 𝑉 and 𝑊 are given by: 

                       𝑣1
′ =< 2, 1 >                   𝑤1 =< 1,0 > 

                       𝑣2
′ =< −1, 2 >                𝑤2 =< 0, 1 >. 

 

     𝑇(𝑣1′) = 𝑇(< 2,1 >) =< 8 + 6, −8 + 2 > =< 14, −6 >=  14𝑤1 − 6𝑤2 

     𝑇(𝑣2′) = 𝑇(< −1, 2 >) =< −4 + 12, 4 + 4 > =< 8, 8 > =    8𝑤1 + 8𝑤2. 

 

               So the matrix representation of 𝑇 is 

                                                              [𝑇]
𝐵′
𝐶 = [

14  8
−6 8

].     
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b.    With respect to the standard ordered basis for 𝑊 we have: 

                  𝑇(𝑣1′) = 𝑇(< 2,1 >) =< 14, −6 > 

                  𝑇(𝑣2′) = 𝑇(< −1, 2 >)  =< 8, 8 >.  

 

        So we have to express < 14, −6 > and < 8, 8 > with respect to the new ordered 

         basis for 𝑊 given by 𝐶′ = {𝑤1′, 𝑤2′} = {< 1, 1 >, < 3, −1 >}.   

 

 < 14, −6 >= 𝑎𝑤1′ + 𝑏𝑤2′ = 𝑎 < 1, 1 > +𝑏 < 3, −1 > =< 𝑎 + 3𝑏, 𝑎 − 𝑏 >  

 

                          14 = 𝑎 + 3𝑏 

                          −6 = 𝑎 − 𝑏 

                           20 =      4𝑏     ⟹         𝑏 = 5, 𝑎 = −1.    So we have:  

 

            𝑇(𝑣1′) =< 14, −6 >=  −< 1,1 > +5 < 3, −1 >= −𝑤1′ + 5𝑤2′. 

 

 < 8, 8 >= 𝑎𝑤1′ + 𝑏𝑤2′ = 𝑎 < 1, 1 > +𝑏 < 3, −1 > =< 𝑎 + 3𝑏, 𝑎 − 𝑏 >  

                          8 = 𝑎 + 3𝑏 

                          8 = 𝑎 − 𝑏 

                          0 =        4𝑏     ⟹         𝑏 = 0, 𝑎 = 8.    So we have:  

 

            𝑇(𝑣2′) =< 8, 8 >=  8 < 1,1 >= 8𝑤′1 + 0𝑤2
′ . 

   

        Thus the matrix representation of 𝑇 is: 

                                                    [𝑇]
𝐵′
𝐶′

= [
−1 8
  5 0

].     
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Ex.  Define a linear transformation 𝑇: 𝑀2×2(ℝ) → 𝑃2(ℝ) with respect to the 

        standard ordered basis 𝐵 = {[
1 0
0 0

] , [
0 1
0 0

] , [
0 0
1 0

] , [
0 0
0 1

]} for 𝑀2×2(ℝ) and 

        𝐶 = {1, 𝑥, 𝑥2} for 𝑃2(ℝ) by 

             𝑇 ([
𝑎 𝑏
𝑐 𝑑

]) = (𝑎 + 𝑑) + (2𝑐 − 𝑏)𝑥 + (𝑎 + 2𝑑)𝑥2.          Find [𝑇]𝐵
𝐶 . 

 

 

 

𝑣1 = [
1 0
0 0

] ,       𝑣2 = [
0 1
0 0

],         𝑣3 = [
0 0
1 0

] ,        𝑣4 = [
0 0
0 1

]  

𝑤1 = 1,     𝑤2 = 𝑥,     𝑤3 = 𝑥2 . 

 

       𝑇(𝑣1) = 𝑇 ([
1 0
0 0

]) = 1 + 𝑥2 = 𝑤1 + 𝑤3;             𝑇(𝑣1) =< 1,0,1 >𝐶  

        𝑇(𝑣2) = 𝑇 ([
0 1
0 0

]) = −𝑥 = −𝑤2;                          𝑇(𝑣2) =< 0, −1,0 >𝐶  

        𝑇(𝑣3) = 𝑇 ([
0 0
1 0

]) = 2𝑥 = 2𝑤2;                             𝑇(𝑣3) =< 0,2,0 >𝐶  

        𝑇(𝑣4) = 𝑇 ([
0 0
0 1

]) = 1 + 2𝑥2 = 𝑤1 + 2𝑤3;          𝑇(𝑣4) =< 1,0,2 >𝐶        

                                

                             [𝑇]𝐵
𝐶 = [𝑇(𝑣1) 𝑇(𝑣2) 𝑇(𝑣3) 𝑇(𝑣4)]       

                                       = [
1  0 0 1
0 −1  2 0
1  0 0 2

] . 
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Def.  Let 𝑇, 𝑈: 𝑉 → 𝑊 be arbitrary functions, where 𝑉 and 𝑊 are vector spaces.  Define 

(𝑻 + 𝑼): 𝑉 → 𝑊 by   (𝑇 + 𝑈)(𝑣) = 𝑇(𝑣) + 𝑈(𝑣) for all 𝑣 ∈ 𝑉 and  

                   (𝜶𝑻): 𝑉 → 𝑊 by            (𝛼𝑇)(𝑣) = 𝛼𝑇(𝑣)     for all 𝑣 ∈ 𝑉.  

 

 

Theorem:  Let 𝑉 and 𝑊 be vector spaces and 𝑇, 𝑈: 𝑉 → 𝑊 be linear. 

                   a.  For all 𝛼 ∈ ℝ,  𝛼𝑇 + 𝑈 is linear. 

                   b.  The collection of all linear transformations from 𝑉 to 𝑊 is a vector 

                         space. 

 

Proof:    a.    Let 𝑢, 𝑣 ∈ 𝑉 and 𝑐 ∈ ℝ. Then 

                  (𝛼𝑇 + 𝑈)(𝑐𝑢 + 𝑣) = 𝛼𝑇(𝑐𝑢 + 𝑣) + 𝑈(𝑐𝑢 + 𝑣) 

                                                       = 𝛼[𝑐𝑇(𝑢) + 𝑇(𝑣)] + 𝑐𝑈(𝑢) + 𝑈(𝑣) 

                                                       = 𝑐[𝛼𝑇(𝑢) + 𝑈(𝑢)] + 𝛼𝑇(𝑣) + 𝑈(𝑣) 

                                                        = 𝑐(𝛼𝑇 + 𝑈)(𝑢) + (𝛼𝑇 + 𝑈)(𝑣). 

So 𝛼𝑇 + 𝑈 is linear.    

 

b.  Notice that 𝑇0(𝑣) = 0 is the zero vector in the collection of linear transformations 

from 𝑉 to 𝑊. 

By part a, this collection is closed under addition and scalar multiplication. 

 It’s straight forward to verify that the vector space axioms hold. 
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Def.  Let 𝑉 and 𝑊 be vector spaces.  We denote the vector space of all linear 

transformations from 𝑉 to 𝑊 by ℒ(𝑽, 𝑾).  If 𝑊 = 𝑉 then we write ℒ(𝑽).   

 

 

Theorem:  Let 𝑉 and 𝑊 be finite dimensional vector spaces with orderd bases 𝐵 and 𝐶.  

Let 𝑇, 𝑈: 𝑉 → 𝑊 be a linear transformation.  Then 

a.  [𝑇 + 𝑈]𝐵
𝐶 = [𝑇]𝐵

𝐶 + [𝑈]𝐵
𝐶  

b.  [𝛼𝑇]𝐵
𝐶 = 𝛼[𝑇]𝐵

𝐶    for all 𝛼 ∈ ℝ.   

 

Proof: a.   Let 𝐵 = {𝑣1, … , 𝑣𝑛} and 𝐶 = {𝑤1, … , 𝑤𝑚} be ordered bases for 𝑉 and 𝑊 

repsectively.       For 1 ≤ 𝑗 ≤ 𝑛: 

                    𝑇(𝑣𝑗) = 𝑎1𝑗𝑤1 + 𝑎2𝑗𝑤2 + ⋯ + 𝑎𝑚𝑗𝑤𝑚 

                    𝑈(𝑣𝑗) = 𝑏1𝑗𝑤1 + 𝑏2𝑗𝑤2 + ⋯ + 𝑏𝑚𝑗𝑤𝑚. 

 

 Hence: 

                (𝑇 + 𝑈)(𝑣𝑗) = (𝑎1𝑗 + 𝑏1𝑗)𝑤1 + (𝑎2𝑗 + 𝑏2𝑗)𝑤2 + ⋯ + (𝑎𝑚𝑗 + 𝑏𝑚𝑗)𝑤𝑚  

 and        ([𝑇 + 𝑈]𝐵
𝐶 )𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 = ([𝑇]𝐵

𝐶 )𝑖𝑗 + ([𝑈]𝐵
𝐶 )𝑖𝑗. 

 

 b.  follows in similar fashion. 
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Ex.  Let 𝑇: ℝ2 → ℝ3 and  𝑈: ℝ2 → ℝ3 be linear transformations defined by 

                       𝑇(< 𝑎1, 𝑎2 >) =< 2𝑎1 − 𝑎2,  𝑎2, 𝑎2 − 3𝑎1 >       and  

                       𝑈(< 𝑎1, 𝑎2 >) =< 𝑎1 + 𝑎2,  2𝑎2, 3𝑎1 − 2𝑎2 >. 

         Let 𝐵 and 𝐶 be the standard ordered bases for ℝ2 and ℝ3 respectively. Then 

 

     𝑇(𝑣1) = 𝑇(< 1,0 >) =< 2,0, −3 >;          𝑈(𝑣1) = 𝑈(< 1,0 >) =< 1,0,3 > 

     𝑇(𝑣2) = 𝑇(< 0,1 >) =< −1,1,1 >;            𝑈(𝑣2) = 𝑈(< 0,1 >) =< 1,2, −2 >  

 

                       [𝑇]𝐵
𝐶 = [

2 −1   
 0 1

−3  1
]                   [𝑈]𝐵

𝐶 = [
1 1
0  2
3 −2  

].   

 

  Notice that  (𝑇 + 𝑈)(< 𝑎1, 𝑎2 >) =< 3𝑎1, 3𝑎2, −𝑎2 > 

  ⟹              [𝑇 + 𝑈]𝐵
𝐶 = [

3 0
0  3
0 −1  

] = [
 2 −1   
 0 1

−3 1
]+[

1 1
0  2
3 −2  

] = [𝑇]𝐵
𝐶 + [𝑈]𝐵

𝐶 . 


