Linear Transformations

Def. Let V and W be vector spaces. We call a functionT:V — W a linear
transformation from V to W if forallu,v € Vandc € R

a. Tw+v)=Tw)+Tw)
b. T(cv) = cT(v).

Theorem: Let T:V — W be a linear transformation from a vector space V to a
vector space W. Then foru,v,uq,..u, €V, a,b,a4,...,a, ER

1. T(0)=0

2. Tw—u)=Tw) —-T()

3. T(au + bv) = aT(u) + bT(v)
4. TRz awy) = Ximq a;T (W)

Proof:
1. T(0) =T(2(0)) = 2T(0) = T(0)=0.
2.T(v—u) = T(v + (—u)) =Tw)+T(—u)
=Tw) — T(w).

3. T(au + bv) = T(au) + T(bv) = aT(u) + bT (v).
4. T aqiw) = T(auy + ayuy, + - a,vy)

= T(a;uqy) + T(auy + -+ + auy)

= a;T(uy) + T(ayu,) + T(azus + -+ auy)

=a,;T(uy) +a,T(uy,) + -+ a,T(u,)
= ¥, 4T (w):



Ex. Show that T:V — W is a linear transformation if and only if
T(cv+u) =cT(w)+T(u)forallu,v eV, ¢ €R.

Proof: Case #3 of the previous theorem shows if T is linear then

T(cv+u) =cT(w) +T(u)forallu,v €V, c €R.

Now let’s show that if T(cv + u) = cT(v) + T(u) forallu,v €V, c€R
then T is linear.

We must show:
1. T(u+v)=Tw)+T(v)forallu,v €V
2. T(cv) = cT(v) forall c € R.

1. SinceT(cv +u) = cT(v) + T(u) forallu,v €V, ¢ € R, it's true
forc = 1.

ThusT(v +u) =T(w) + T(u) forallu,v € V.

2. Ifwetakeu = 0thenT(cv + 0) = cT(v) + T(0)
= T(cv) = cT(v) + 0 = cT(v).



Ex. Show that T: R? - R? by T(< a,,a, >) =< a; + 2a,,a,; >isalinear
transformation.

By the previous example we just need to show that T (cv + u) = cT(v) + T(u)
forallu,v € R? c €R.

Foranyu,v € R?, wehave u=<ux;,y; >, v =<2x,7Y, >and
T(c<xyy,>4<x5,V,>)=T(< cxy+ xp, Cy; + 7y, >)

=<< Cx1 + xz + Z(Cyl + yz), Cx1 + xZ >.

CT(<x1, 91 >)+T(< xp,¥, >) =c(K x1 + 2y, X1 >) + (< xp +2y,, x, >)
=< cxq + 2¢cy; + x5 + 2y,, cx1 +x, >
=< cx; + x5, + 2(cy, +y,), cx; +x, >
=T(c <x,y, > +< x5, 7, >).

SoT(cu+v) =cT(u) + T(W)forallu,v € R%, ¢ € RandT is linear.



Ex. DefineT:R? » R% by T(< a4, a, >) =< —ay,a, >. T is a reflection about
the y-axis. Show that T is a linear transformation.

Foranyu,v € R?, wehave u=<ux;,y; >, v =<x,7Y, >and
T(c<x,y,>+<x5,7,>)=T(< cxy + x5, cy; +y, >)
=< —(cx1 + x3), ¢y, +y, >.

T(<x, 1 >) +T(<x3,y, >) = (< =%, Y15)+< =X, ¥, >
=< —CXy =X, Y1t Y2 >
=< —(cx1 +x2), cy; +y, >
=T(c <x1.,y1 > +< x3,Y5 >)

So T is linear.

Ex. Showthat T:R? - R?2byT(< a,b >) =< a + 3,b >isnota linear
transformation.

Notice that if ¢ # 1 then T(cv) # cT (v):
T(c<ab>)=T(ca,chb>)=<ca+3,cb>

cT(<a,b>)=cla+3,b) =(c(a+3),cb) # (ca+ 3,ch).

It’s also true that T(< 0,0 >) #< 0,0 >and T(u + v) = T(u) + T(v) in
general.



Ex. ShowthatT: R? > R?by T(< a,b >) =< a,0 > (called a projection) is a
linear transformation.

If weletu =<a,,b; >, v=<a, b, >andc € Rthen we have:
T(cu+v) =T(c <ay by >+<a,, b, >)
=T(<cay +a,, by +b,>)
=<ca; +a, 0>

cT(w) +T(w) =cT(< ay, by >)+T(< ay, b, >)
=c<a,0>+<a,, 0>

=<ca; +a, 0>

Thus T(cu + v) = cT(u) + T(v) forallu,v € R?, ¢ € R, so T is linear.

Ex. Show that T: B,(R) — P,(R) by T(f(x)) = f'(x) is a linear transformation.

Let f(x), g(x) € P,(R) and c € R.
T(cf () + g(x) = (cf (x) + g(x))’
=cf'(x) + g'(x)
= cT(f(x)) + T(g(x)).

So T is a linear transformation.



Ex. LetV = C|a, b], the vector space of continuous real valued function on
[a, b]. DefineT:V — R by T(f(x)) = f; f(x)dx. Show that T is a linear

transformation.

Let f(x),g(x) € C[a,b] and ¢ € R then

T(cf (x) + g(®) = [ (cf (x) + g(x))dx
c [ f(dx + [ g(x)dx
= cT(f () + T(g(x)).

So T is a linear transformation.

Ex. Show that T: R? - R? by T(< a,,a, >) =< a,d,,a, > is not a linear
transformation.

Letv =< ay,a, >andc € R, ¢ # 1then
T(cv) =T(c < aq,a, >)
=T(< caq, ca, >)

=< c*aya,, ca, >

cT(< aq,a, >) =c<aqa,a, >

=< ca,a,,ca, >+ T(cv).

Thus T is not a linear transformation.

In this case it also happens to be true that T(u + v) # T(u) + T (v) in general.



Ex: Suppose T: R? — R3 is a linear transformation such that
T(<23>)=<0,34>andT(<3,2>) =<-1,2,3>. FindT(< 2,8 >).

Notice that we can write < 2,8 > as a linear combination of < 2,3 > and < 3,2 >.
a<23>+b<3,2>=<28>
<2a+3b,3a+2b>=<28>

= 2a+3b =2
3a + 2b = 8.
Solving these simultaneous equations we geta = 4,b = —2.

Thus we have: 4<2,3>-2<3,2>=<2,_8>.

Hence we have:
T(<28>)=T(4<23>-2<3,2>)
=4T(< 2,3 >) —2T(< 3,2 >)
=4<034>-2<-123>
=<0,12,16 > —< —2,4,6 >
=< 2,8,10 >.

In fact, given any < x,y >€ R? we can find T(< x,y >) by writing < x,y > as a
linear combination of < 2,3 > and < 3,2 >. In this case we would need to solve:

a<2,3>+b<32>=<xy>
= 2a+3b=x
3a+2b=y

for a and b in terms of x and y.



Two important linear transformations are:
1. The identity linear trasformation I: V — V, where [(v) = vforallv € V.

2. The zero linear transformation Ty:V — V, where To(v) = O forallv € V.

Def. Let V and W be vector spaces, and let T: V' = W be linear. The null space or
kernel of T, N(T), is the set of v € V such that T(v) = 0. The range or image of T
is the subset of W given by R(T) = {T(v)| v € V}.

Ex. Let[:V — V and Ty: V — W be the identity and zero transformations. Then
N(D) = {0} N(To) =V
R(I)=V R(T,) = {0}.

Ex. Let T: R3 — R? be the linear transformation given by

T(< aq,a5,a3 >) =< a; + a,,3a; >. Find N(T) and R(T).

To find N(T) we need to find all vectors < a4, a,, az > such that
T(< aq,aya3 >) =<a; +a,, 3a; >=< 0,0 >.
aq+a,=0 = a =-a,
3a; =0 = a;=0

So N(T) ={< a,—a,0 >€ R3| a € R}.



R(T) ={T(< ay,a,,a; >) =< a; + a,,3a; >€ R?| a;,a,,a; € R}.

Let < x,y > be any vector in R?. Let’s show that < x,y >€ R(T).
<a+ay3a; >=<x,y >.
So a,+a, =x
3a; =Y.

In particularifa; = x, a, =0, aj =§ then

T(< X, 0,% >) =<x,y> = R(T) =R
Theorem: Let V and W be vector spaces and T:V — W be linear. Then N(T) is a
subspace of V and R(T) is a subspace of W.
Proof: First we show that N(T) is a subspace of V.

Suppose that v,w € N(T) and ¢ € R then

Tw+w)=TW)+TwW)=04+0=0 = v+weN(T).

T(cv) =cT(w) =¢c(0)=0 = cv € N(T).

So N(T) is a subspace of V/.
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Now we show that R(T) is a subspace of V.

Suppose that wy, w, € R(T) and c € R then there exist v, v, € V such that
T(vy) =w; and T(v,) = ws.
Thus we have:
T, +v,)=TWwy) +TWw,) =w; +w, = w; +w, € R(T).
T(cvy) = cT(vy) = cwy = cw; € R(T).

So R(T) is a subspace of W.

Theorem: Let V and W be vector spacesand T:V — W be linear. If
B = {v;, ..., v, }is a basis for V then

R(T) = span(T(B)) = span{T (v,), ..., T(v,)}.

Proof: T(v;) € R(T) for each i.
R(T) is asubspace of W = R(T) contains span{T (v,), ..., T(v,)}.

Now suppose w € R(T) thenw = T(v) forsomev € V.
Since {v4,...,v,}isabasisforV, v =}, a;v; forsomea,,..a, € R
Since T is linear we have:
w=T@) = TEL, awy) = Ty a;T(v;) € span(T(B)).
So R(T) is contained in the span{T(v,), ..., T(v,)}.

Since R(T) 2 span{T (v,), ..., T(v,)}and R(T) € span{T (v,), ..., T(v,)},
= R(T) = span(T(B)) = span{T(v,), ..., T (v,)}.



Ex. Define the linear transformation T: P,(R) = M,,,(R) by

3)—f(1 0

Find a basis for R(T) and dimR(T).
Since B = {1, x,x2} is a basis for P,(R)

R(T) = span{T (1), T (x), T (x*)}

=svanf(y 3] [y ol [y ol

- san) 9] 2 O

: 0 0 2 0 . . : .
Since [0 1], [0 0] are linearly independent (one is not a nonzero multiple of

the other) they form a basis for R(T). Hence dimR(T) = 2.

Def. Let V and W be vector spaces and T:V — W be linear. If N(T) and R(T) are
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finite dimensional, then we define the nullity of , Nullity(T) = dimN(T), and the

rank of T, Rank(T) = dimR(T).
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Theorem (dimension theorem): Let V and W be vector spacesand T:V — W be
linear. If V is a finite dimensional vector space then

Nullity(T) + Rank(T) = dim(V).

Proof: Suppose that dim(V) = n,
dimN(T) = k and {v,, ... v} } is a basis for N(T).

Extend {v,, ... vy } to a basis {v,, ... v,,} of V.

Claim: S = {T(Vy41), .., T (v,)} is a basis for R(T).

SinceT(v,) =T(v,) =+ =T(v) = 0, we know from the previous
theorem that S generates R(T) since
R(T) = span{T (vy), ..., T(v,)} = span{T (Vg41), .., T (W) }.

Now let’s show that S is linearly independent. Suppose
brs1T (Wg41) + -+ by T(vy) = 0.
Since T is linear: T(bgy1(Wgs1) + -+ by (v,)) = 0.
S0 b1 (Vksr) + -+ bp(vy) € N(T).

Since {vy, ... Uy } is a basis for N(T) there exist ¢y, ..., ¢, € R such that
¢1V; + -+ OV = by (Wpyr) + -+ b (V)

C1V1 + -+ U — bgp1 (Wgq1) — -+ — by (vy) = 0.

But {v,, ... v, } are linearly independent so by, 4, ..., b, = 0.
Hence S is linearly independent and a basis for R(T).

Thus Rank(T) = n — k and Nullity(T) + Rank(T) = dim(V).
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Ex. LetT:R3 » R? by T(< a4, a,,a; >) =< a; + a,,3a; >. Find the
dim(R(T)).

We found earlier that
N(T)={<a,—-a,0>aeR}={a<1,—-1,0>]| a € R}.
So N(T) has a basis of < 1,—1,0 > and dim(N(T)) = 1.

By the previous theorem we know that dim(R(T)) = 2 since dim(R®) = 3.
dim(N(T)) + dim(R(T)) = dim(R®)
1+ dim(R(T)) =3
= dim(R(T)) = 2.

Def. Let V and W be vector spacesand T:V — W be linear. T is called
one-to-one if T(v,) = T(v,) implies v; = v,. T is called onto if given

any w € W there exists at least one v € V such that T(v) = w.

Theorem: Let V and W be vector spacesand T:V — W be linear. Then T is one-to-
oneif and only if N(T) = {0}.

Proof: Suppose T is one-to-one and v € N(T).
Then T(v) = 0 = T(0).

But T is one-to-oneso v = (.

Now suppose that N(T) = {0}and T (x) = T(y).
Then 0=Tx) —-T() =Tk —1y), so x —y € N(T).

Thusx —y = 0and x = y. Thus T is one-to-one.



Theorem: Let VV and W be vector spaces of equal (finite) dimension, and let
T:V — W belinear. Then the following are equivalent:

a. T is one-to-one
b. T is onto

c. Rank(T) = dim (V).

Proof: Recall that Nullity(T) + Rank(T) = dim(V).
T is one-to-one & N(T) = {0}.
N(T) = {0} & Nullity(T) = 0.
Nullity(T) =0 < Rank(T) = dim(V).
Rank(T) = dim(V) < Rank(T) = dim(W).
Rank(T) = dim(W) < R(T) =W, i.e. T is onto.

Note: The previous theorem does not hold if IV and W are infinite dimensional.

For example,letV =W = P(R) and T: P(R) = P(R) by

1. T(f(x) = [, f®)dt.

T is one-to-one because T(f(x)) = T(g(x)) means
J; f(©de = [ g(t)dt forallx.
[(f@® - g®)dt = 0 forall x.
= f&x) = g(x).

However, T is not onto as T'(f (x)) #constant function.

14
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2. T(F() = F(0).
T is not one-to-one because T(f (x)) = T(g(x)) means

f'x)=g'(x) = f(x)=g(x)+ C forany constant C.

However, T is onto because given any g(x) = ay + a;x + -+ + a,x™ € P(R)

then f(x) = [ g(x)dx = apx + %alxz + -+ %x"“ + C has the
property that T(f(x)) = g(x).

Ex. Let T: P,(R) = P,(R) by T(f(x)) = xf'(x). Show that T is a linear

transformation. Determine if T is one-to-one and/or onto.

To show that T is a linear transformation, let f(x), g(x) € P,(R) and c € R.

Then we have:
T(cf(x) + g(x)) = x[cf(x) + g(x)]’
= x[cf'(x) + 9’ (x)]
=cxf'(x) + xg'(x)
= cT(f(x)) + T(g(x)).

Thus T is linear.

T is one-to-one & N(T) = {0}.
T(f(x)) =0
xf'(x) =0
= x=0or f'(x)=0.
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But f'(x) =0 = f(x) = constant.

Thus all constant functions f(x) € N(T).

Hence N(T) # {0} and T is not one-to-one.

In fact N(T') is spanned by f(x) = 1 hence
dim(N(T)) = 1.

Since Nullity(T) + Rank(T) = dim(P,(R)) = 3
Rank(T) = 2so R(T) # P,(R) and T is not onto.

R(T) is spanned by T (1), T (x), T(x?) because {1, x, x2}is a basis for P,(R).
R(T) = span{T(1),T(x), T(x*)}.

T(1)=x(0)=0 sinceif f(x) =1, f'(x) =0.

T(x)=x(1)=x sinceif f(x) =x, f'(x)=1.

T(x?) = x(2x) = 2x? sinceif f(x) = x2, f'(x) = 2x.

Thus R(T) = span{0, x, 2x*} = span{ x, 2x*}
= {p(x) € P,(R)| p(x) = ax + 2bx?, a,b € R}

Since x and 2x2 are linearly independent, dimR(T) = 2.
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Ex. Suppose that T: R? - R?is linearand T(< 0,1 >) =< 2,3 > and
T(< 2,—1>) =< 1,2 >. Is T one-to-one?

By the previous theorem with V = W = R?, we have dimV = dimW = 2.

T is one-to-one if T is onto (i.e. R(T) = R?).

But since < 0,1 > and < 2,—1 > are linearly independent (one is not a
multiple of the other), they form a basis for V = R?. Thus we have:

R(T) = span{T(< 0,1 >), T(< 2,—1 >)} =span{< 2,3 >,< 1,2 >}.
But < 2,3 > and <1,2 > are also linearly independent and thus a basis for
W = R2.

Hence R(T) = R? and T is onto = T is one-to-one

Ex. Let V and W be vector spaces of equal (finite) dimension, and letT:V - W
be linear. Show that if dim(V) > dim(WW), then T can’t be one-to-one.

Nullity(T) + Rank(T) = dim(V) > dim (W).
R(T) is a subspace of W so dim(R (T)) < dim(W).
Thus  dim(N(T)) + Rank(T) > dim(W) = dim (N(T)) > 1.

Hence N(T) # {0} and T is not one-to-one.
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Theorem: Let V and W be vector spaces and suppose that {v;, ..., v, } is a basis for
V. For wy, ...,w, € W, there exists exactly one linear transformation T:V - W
such that T(v;) = w;.

Proof: Givenanyv €V, v =a,v; + ‘- a,v,, wherea,,...,a, are unique.
DefineT:V - W by T(v) = a,w; + -+ + a,w,,.

Notice that T is linear sinceif u,s € V, d € R we have:
u=>byv,+--b,v, and s =c,v; + - Cc,v, SO we get:
du +s = (db; + ¢;)vy + -+ (db, + c,,)v, and

T(du+s)= (dby +¢,)T(vy) + -+ (db,, + c,)T(v,,)
= (dby + ¢;)w; + -+ (db,, + c, )W,
= d(byw; + -+ b,w,) + (cywy + . +c,wy,)
= dT(u) + T(s).

T is unique because if U: V — W is a linear transformation with U(v;) = w; then
UWw) =a,U(wy) + -+ a,U(vy)
=awy +- Fa,wy,
=T(v). (Since T(v;) = w;)
HenceU =T.

Corollary: Let V and W be vector spaces and suppose that {v, ..., v, } is a basis for
V. IfU,T:V - W are linear transformations with U(v;) = T(v;) for i =1, ..., n,
thenU =T.

In other words, a linear transformation is defined by what it does to a set of basis
vectors.



