Basis and Dimension

Def. The vectors vy, v,, ..., U, form a basis for a vector space I/, if and only
if:

i. Vq,Vy,..,V, arelinearly independent

i. Span(vy,..,v,) =V

Ex. The standard basis for R3 is {e, e,, e5} where e; =< 1,0,0 >,
e, =<0,1,0>, e3=<0,0,1>.
i. eq,e,, e3arelinearly independent because
c1e1 + ey, +c3e53=0

¢, <1,0,0 > 4c, < 0,1,0 > 4¢; < 0,0,1 >=< 0,0,0 >

< ¢q,Cy 03 >=<0,00 >

= ¢, =¢,=¢c3=0,.

ii. Span(ey, ey, e3) = R3 because any vector < a4, d,,as > € R3 can be
written as:

<a1,a2,a3 >= al < 1,0,0> +a2 <O,1,0> +a3 <0,0,1 >

so Span(ey, ey, e3) = R3.

Similarly, the standard basis for R" is {e;, e,, ..., €,,}, where
e; =< 0,0,0,...,1,0,... >, 1inthe i® component.



There is an infinite number of sets of 3 vectors that form a basis for R3.

Ex. Showv; =<1,0,1>, v,=<1,1,0>, andv; =<0,1,1 >formsa
basis for R3.

i. We saw in an earlier example that v4, v,, V3 are linearly independent.

ii. To see that Span(vy, V5, 73) = R3 notice that
any vector v € R3, can be represented by v =< a, b, ¢ >.
We need to show there exist ¢4, ¢,, c3 such that

C1V1 + Cv, + 33 =< a,b,c >
¢;<1,0,1>+4c,<1,1,0>+4¢<0,0,1>=<a,b,c>

<C1+C2, C2+C3, C1+C3>:< a,b,C>

or L+ ¢y =a
c, +c3=0>b
c, + C3 =C.

We solved this system of equation when we showed that x? + 1,
x + 1,and x% + x generated P,(R). We found that:

a—b+c
C:
1 2
a+b—-c
C =
2 2
—a+b+c
C?’:T'

Thus Span(vy, v,, v3) = R3 and vy, v,, 13 is a basis for R3.



Ex. Show {E'1, E'2 E?1 E22} where

Ell —

E21 —

e e

oo oo
2e R

_,o O R

forms a basis for M,,., (R) (this is called the standard basis for M,,, (R)).

i. Show {E', E2 E21 E?2} are linearly independent

¢,E1 4 ¢,E2 4 c,E?1 4 ¢,E?2 =0

aly oltely o+ely o+ el 1=l o

i el=1o o

Soci=C,=c3=¢c,=0= {Ell,Elz,E21,E22} linearly independent.

ii. Show Span(E'l, E12 E?1 E?2) = M, ,,(R). Givenany A € M,,,(R)

show A can be writtenas A = ¢, E + ¢, E'? + ¢35 E?! + ¢, E??.

A = [a11 a12]

az1 Ay

C1E11 + C2E12 + C3E21 + C4E22 - A

C1 ] [ 2 l l [a11 a12
C3 azq azz

€1 2] . [a11 a12]

[C3 Cy a1 Ay




Similarly, if we define EY € M,,.,,(R) to be the matrix with a 1 in the i*" row
and j* column and 0 everywhere else, then

{EV|1<i<m, 1<) <n}isabasis for M, (R).

Ex. Show the set of polynomials {1, x, x2, ..., x™} is a basis for P, (R).

i. {1,x,x2,...,x"}is linearly independent since:
(D) +cp(x) + c3(x®) + 4y (™) =0

= G =C == Cpyp = 0.
i. {1,x,x2,...,x™}spans P,(R) since given any p(x) € P,(R)
we have p(x) = ag + a;x + a,x* + -+ + a,x™ and
(D) +cp(x) + -+ (™) =ag +ayx + -+ ax™
= (1 = Qg, €2 =0Q, C3=04z Cpyq = Ap.

Thus {1, x, x2, ..., x™} is a basis for P,(R).

{1,x,x2,...,x"} is called the standard basis for P,,(R).

Ex. Theinfinite set {1, x,x?,...}is a basis for P(R), the vector space of
polynomials with real coefficients.



Theorem: Let V be a vector space and B = {v;, ..., U, } be a subset of V.
Then B is a basis for V if and only if each v € V can be uniquely
expressed as a linear combination of vectorsin B, i.e.,

v =a,v; +a,v, +---+ a,v, forunique a;,a,, ...,a, € R.

Proof: Suppose B is a basis for V.
Then forany v € V, v € span(B), because span(B) = V.
Suppose that there are two linear combinations of vy, ..., v, that
equal v.
v=av+av,+--+a,v,
v = byvy + byv, + -+ b, v,

Then by subtraction we have:
0 = (ay — by)vy + (a; — b)vy + -+ + (an — b)) vy

But vy, ..., U, are linearly independent so
a,—b,=a,—b,=-=a,—b,=0
and thus:
a, =by, a, =b,,..., a, = b,.

So v is uniquely expressed as a linear combination of v4, ..., V.

Now let’s assume that every v € V can be uniquely expressed as a linear
combination of B = {vy, ..., v, } and show that B is a basis for V.

Sincev = a v, + a,v, + -+ a,v, = v € span{v, ..., v, }.

Now let’s show that vy, ..., v, are linearly independent.
Let’s suppose that c;v; + ¢, v, + -+ + ¢, v, = 0 and show that
C1 =C =+=¢, =0.

We know that v has a unique representation:
V=a.v; +ayv, + o+ ayv,.



But since c;v; + ¢V, + -+ + ¢, v, = 0 we have:

v=(a,+c)vy + (a, +c)v, + -+ (a,+c,)v,.

But since v has a unique representation we have:
(al + Cl) = aq, -y (an + Cn) = an

Thus we havec; = ¢, = +-- = ¢,, = 0sothat v4, ..., 1, are linearly
independent and B = {v,, ..., v, } is a basis for V.

Theorem: If a vector space V is generated by a finite set S, then some subset
of S is a basis for V. Hence V has a finite basis.

Proof: Let S = {v,, ..., v, } be a finite generating set for V.
Any single (nonzero) vector v, is linearly independent.

Continue adding vectors from S, if possible, such that {u,, ..., uy}
are linearly independent (where u; = v;) and adding any vector

Uga1, - » Un Will make the set linearly dependent.

But for any vector Uy 4, ..., Uy, € S we have
Ui = ajuq + -+ aguy
because if a set T is linearly independent and adding a vector u

makes the set dependent then u € Span(T).

Thus u; € span{uy, ..., Uy}
Hence S € span{ug, ..., Uy}

Since S generates V, {u,,...,u;} generatesV.
Thus {uy, ..., U} is a basis for V.

Theorem (Replacement Theorem): Let IV be a vector space that is generated
by aset G = {v,, ...v,} € V containing exactly n vectors, and let

L ={wy,...,w,} €V be alinearly independent subset of VV containing m
vectors. Then m < n and there exists a subset H € G containing exactly

n — m vectors such that L U H generates V.



Proof: The proof is by induction on m.
m=20,L=¢.
Now take H = G = {vy, ..., v,} and L U H = G which generates V.

Now assume the theorem is true for m > 0 and show it’s true for
m+ 1.
Let L = {wy, ..., Wy,41} be m + 1 linearly independent vectors.

By an earlier theorem we know that {w;, ..., w,,, } is also linearly
independent.

So we can apply the induction hypothesis to {wy, ..., w,, }, that is
there exist n — m vectors Uy, ..., Up_;; © G such that
{Wy, ., Wy, Uq, wo, Uy } BENETAtEs V.

Thus there exist a4, ..., @, by, ..., by_;, such that
W1 = Wy + -+ ayuWy, + byug + -+ byl (%).

Notice that n — m > 0 otherwise wy, ..., W, 41 wouldn’t be linearly
independent. Hencen > m, i.e. n>m+ 1.

Since Wy, ...., Wy, ;1 are linearly independent, at least one b; # 0.
Let’s assume that b; # 0.

Now solve (*) for u;:

1 a am b, bpn—m

Uy =5y Wmr = Wi == Wi = Uy = = = = Un—m-

Now let H = {u,, ..., U,_m,}, Which hasn — (m + 1) vectors and
u; € span(L U H).

In addition, Wy, ..., Wy, Up, oo, U © span(L U H).

Thus Wy, ..., Wy, Uq, oo, Uy, © span(L U H).

But span{wy, ..., Wy, Uy, e, Upy_m} =V, thus span(LUH) = V.



Corollary 1: Let V be a vector space having a finite basis. Then every basis for V
has the same number of vectors.

Proof: Suppose B = {v, ..., v, } and C = {w,,..,w; } are both bases for V,
with k > n.

Then we can select a subset S € C with exactly n 4+ 1 vectors.

Since S is linearly independent (because C is) and B generates V,
The Replacement Theorem says that n + 1 < n which is a
contradiction.

Thus k * n.

Now reverse the rolls of B and C and we getn * k.
Hencen = k.

Def. A vector space is called finite dimensional if it has a basis consisting of a
finite number of vectors (by corollary 1 this is unique). The number of vectors
in any basis for I is called the dimension of V, denoted dim(V). A vector
space that is not finite dimensional is called infinite dimensional.

Ex. V = R™ with the usual addition and scalar multiplication has
dimensionn ase; =< 1,0,...,0 >, ..., e, =< 0,0,..,1 > is a basis for R".

Ex. The vector space M,,x,(R) has dimension mn as
{EV}, 1<i<m, 1<j<nwhereEY isamatrix witha 1in the i
row and j** column and zeros elsewhere, is a basis.

Ex. The vector space P,(R) has dimensionn + 1 as {1, x, x2, ..., x"}is a
basis.

Ex. The vector space P(R) of all polynomials with real coefficients is an
infinite dimensional vector space. A basis for P(R) is given by
{1, x, x%, x3,...}.



Corollary 2: Let V be an n-dimensional vector space then:

a. Any finite generating set for I/ contains at least n vectors, and a generating
set for VV that contains exactly n vectors is a basis for I/.

b. Any linearly independent subset of V that contains eactly n vectors is a
basis for V.

c. Every linearly independent subset of V can be extended to a basis for V.

Proof: Let B = {vy, ..., v,} be abasis for V.

a. Let G be afinite generating set for I/.
By an earlier theorem some subset H € ( is a basis for V.
By corollary 1, H has exactly n vectors.
Since H € G, G must contain at least n vectors.
If G contains exactly n vectors then G = H and is a basis for V.

b. Let L be a linearly independent set containing exactly n vectors.
By the Replacement Theorem there is a subset H € B containing
n —n = 0 vectors such that L U H generates V.
Thus H = ¢ and L generates IV and is a basis for I/.

c. LetL = {wy, ..., w,,} a linearly independent subset of V.
By the Replacement Theorem there is a subset H € B containing
n — m vectors such that L U H generates V.
Since L U H contains at least n vectors by part “a”, L U H contains
exactly n vectors and is a basis for V.

Ex. The following sets cannot be bases for R3:

a. {<2,1,2>,<1,3,-2 >}

b. {<1,2,3> <-1,2,1>,<0,0,1>, <0,1,0 >}
because a basis for R® must have exactly 3 vectors.
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Ex. We saw earlierthat< 1,1,0 >,< 1,0,1 >and < 0,1,1 > are linearly
independent vectors in R3. Since dim(R3?) = 3, these vectors
are a basis for R3.

Ex. We saw earlier that x> + 1, x + 1, and x? + x are linearly
independent vectors in P,(R). Since dim(P2 (R)) = 3, these vectors
are a basis for P, (R).

Ex. We saw earlier that [(1) (1)], [(1) ﬂ, [(1) (1)], H (1)] generate the

vector space M,, (R). Since dim(szz(]R)) = 4, these vectors are a
basis for M, (R).

Theorem: If W is a subspace of a finite dimensional vector space IV then W' is
finite dimensional and dim(W) < dim(V). If dim(W) = dim(V) then
w="V.

Proof: Let dim(V) = n.
If W = {0} then dim(W) = 0 < n.

If W # {0}, choose a nonzero vector w; € W.

{w, }is a linearly independent set.

Continue choosing vectors W, ..., W, € W such that {w,, ..., w;}
is linearly independent.

Since V' contains at most n linearly independent vectorsand W € 1/,
k <n.

But since adding any other vector in W to {wy, ..., Wy } makes the
set linearly dependent, {wj, ..., w; } spans W and
dim(W) < dim(V).
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If dim(W) = dim(V) then there are n linearly independent
vectors wy, ..., w, EW C V.
But then wy, ...,w, isabasisforVandV = V.

Ex. The set of diagonal n X n matrices, D, is a subspace of M,;,(R). A
Basis for D is given by {E'1, E?2 E33, ..., E™} where
E™ =matrix with a 1 in the i*" row and column and zeros elsewhere.
Sodim(D) = n.

Ex. Let W € R3 be the subspace defined by
W = {< X1, X2, X3 >c [R3| X1 — Xo + X3 = 0}
Find a basis for W.

W is all vectors of the form < x4, x,,x3 >€ R3; x; — x, + x3 = 0.
Thus x; = x5, — x3.
Hence W ={<a—b, a, b >ER3| a,b € R}.

<a-—b,ab>=<aaq0>+<-b,0,b>
=a<110>+b<-1,0,1>.

Thus< 1,1,0 >, < —=1,0,1 >span V.
Toshow< 1,1,0 >and < —1,0,1 > are linearly independent, assume

4, <1,1,0 > +a, < —1,0,1 >=< 0,0,0 >
< al - az, al, a2 >=< 0,0,0 >

Thus we have:

al—a2=0
a1 :0 =>a1:a2:0.
a2=O.

and< 1,1,0 >, < —1,0,1 > arelinearly independent.

Thus< 1,1,0 >, < —1,0,1 >is a basis for W.
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(Also note that for two vectors in R™ to be linearly dependent, one
vector must be a nonzero multiple of the other vector).

Ex. Let W = {< xq,x5, %3 SER3| x; —x, + x3 =0 and 2x; + x, — x3 = 0}
Find a basis for W'.

W is the set of vectors in R3 that satisfy both x; — x, + x3 = 0 and
2x, + x, — x3 = 0. Thus we need to solve these equations
simultaneously.

xl_xZ+X3:0
2x1 +x, —x3 = 0.

Multiply equation one by 2 and subtract it from equation two.

X1 —X,+ x3=0
3x2_3x3:0.

Divide equation two by 3.
X1 — Xy +x3=0
X, —x3 = 0.
Add equation two to equation one.
X1 =0
X, —x3 = 0.

ThUS x1 - 0 and xZ = X3.

So W is the set of vectors in R3 of the form
<0,aa>=a<0,1,1 >.

Thus< 0,1,1 > spans W.

A single vector is linearly independent, so < 0,1,1 > is a basis for W.



