Orthogonal Projections and the Spectral Theorem

Def. Let /] and V, be non-empty subsets of a vector space I/ then:

V1 + VZ = {vl +v2| V1 € Vl’ %) € Vz}

Def. Avector space I/ is called the direct sum of I/; and V,, written V; @ V,,
if V; and V, are subspaces of V suchthatV; NV, = {0}andV; +V, = V.

Ex. If V = R?, and V; is spanned by < 1,0 > and V, is spanned by < 0,1 >,
thenV; = x-axisand V, = y-axisand R? = V1 @ V, since

V,={<a0>la€eR}, V,={<0,b>|beR}
and any vector < a, b >in R? canbe writtenas < a,0 > +< 0,b >

and Vl N Vz = {O}.

Def. Let /] and V, be subspaces of a vectorspace VandV = V; @ V5.

T:V — Viscalled a projection on V4 along V, if forany v = v; + v,,
V1 € Vll (%) € Vz we have T(v) = V.

Ex. Suppose T: R? > R2. Then T(a,b) = (a,0) is a projection on

V) = x-axis= {< a,0 >| a € R}, along V, = y-axis= {< 0,b >| b € R}.



Ex. LetT:V — V, with
V;, =R(T) ={v, e V|T(wW) = v, forsomew € I}
V, =N(T) = {v, € V| T(v,) = 0}.

ThenV = R(T) @ N(T) and T is a projectiononto V; = R(T) along

Notice that
V=V, ®V, =V, @ V; doesNOTimplyV, = V5.
For example, letV = RZ,
V, ={<a0>|a€R}
V,={<0,b>| b €R}

Vs ={<cc>|c€eR}

Since < 1,0 >, < 0,1 > spans R? and < 1,0 >, < 1,1 > spans R? every
vector in R? can be written as v, + v,, v, € V4, v, €V, or

V1 + V3, V1 € Vll %] € V3. In addition, Vl N VZ - {0} and Vl N V3 - {O}
SO:

V=V1@V2=V1@V3, bUtVZ#:Vg.

So V] does not uniquely determine T.



We can make T unique with the following definition.

Def. LetV be arealinner productspaceand T:V — V a projection. We say
T is an orthogonal projection if R(T)L = N(T) (which is equivalent to
N(T)* = R(T)) where W+ means the set of vectors in V perpendicular to

all of the vectors in W (this is also called the perpendicular complement of
w).

To see the difference between a projection and an orthogonal projection, let
Vi ={<aa>laeR}c R?. We consider two projections of R? onto
V.

a+b a+b

S(a,b) =<a,a> and T(a,b) =<T,T>.

'(v)

S is a “vertical” projection onto V/; while T is an orthogonal projection
onto /1. Thatis, in general v — S(v) (green vector) is not perpendicular to

V1, while v — T (V) (purple vector) is perpendicular to V/;.



In general, if we want to find the orthogonal projectionof v =< X,y >ontoa

unit vectoru =< a, b >, we know from Calculus 3 that:

<v,u>
llul|?

Proj,v = [ ]u = [<v,u>]u.

Soif T is a linear transformation mapping any vector v € ]Rz, vV=<XY >,

onto its orthogonal projection onto a unit vector u =< a, b > we get:
T(x,y)=[<x,y><ab>]<ab>
= (ax + by) <a,b >

=< a’x + aby, abx + b%y >.

So with respect to the standard ordered basis 5 on R? we get:
T(1,0) =< a?ab >
T(0,1) =< ab, b? >

715 = (5 2

Notice that this is just:
t _ (@ _(a®* ab
= (b) (a b)= (ab bZ)'

In particular, if u is an eigenvector of length one, the orthogonal projection

onto u can be represented as: T = uul.



Spectral Theorem: Suppose that T is a linear operator on a real finite
dimensional inner product space I/ with distinct eigenvalues A4, ..., 4.
Assume that T is self-adjoint. For each i, let V; be the eigenspace of T
corresponding to A; and let T; be the orthogonal projection of VV onto V;. Then

we have:

a. V=V OV

b. If V] isthe direct sum of the subspaces Vj, j # i, thenV; = Vi,
c. TiTj=26;T; 1<1i,j<k.

d Th+T,+-+T, =1

e. T=MT1+A,T,+ -+ A,Ty.

The set of eigenvalues {11, ..., A} is called the spectrum of T,
I =T; +T,+,,,+T}, is called the resolution of the identity and
T = ATy + A,T, + +-- + A Ty, is called the spectral decomposition of T'.

Let 5 be the union of the orthonormal bases of the eigenspaces V;, and let

m; = dimV;, then we have:
Y S 0
[T]ﬁ f— ( E " E )
O tee Aklmk

To find the spectral decompositionof A = [T]: V - V:

1. Find the eigenvalues of A

2. Find the eigenvectors/eigenspaces of A

3. Find an orthonormal basis of eigenvectors of 4, U, ..., Uy

4. Find the orthogonal projections T; of V

5. Write A = 44Ty + A, T, + -+ + A, Ty, the spectral decomposition of
A.



EX. Find the spectral decomposition of A = ( 22 _52)
In the section called “Normal and Self-Adjoint Operators” we found an

orthonormal basis for R? of eigenvectors of A (if we hadn’t, we would

need to first find them for this matrix):
1

U =7 <2,1>, associated with1; = 1
1
U; =% < 1,—2 >, associatedwithA, = 6.

The spectral decomposition of A is:
A = 4|T1] + A,[[T2];

Where T; is the orthogonal projection of R? on the eigenspace
1
spanned by u; = = < 2,1 >and T, is the orthogonal

1
projection of R? on the eigenspace spanned by u, = NG <1, -2>.

Hxe n=:G )
1=l =%(C)za -2=3("1 %)

NoticethatT; + T, = I.

T, = [u1][u1]t =

-

So the spectral decomposition of A is:

= D-RE Dty P



4 2 2
Ex. Find the spectral decomposition of A = (2 4 2).
2 2 4

In the section called “Normal and Self-Adjoint Operators” we found an

orthonormal basis for R3 of eigenvectors of A:

1

Uy = 5 <-1,1,0 >, associated with 1; = 2
1

U, = NG <1,1,-2 >, associated with A, = 2
1

Uz = NG <111 >, associated with A; = 8.

We can find the orthogonal projections of R3 onto each eigenvector by
— t
T = u;(wy)".

N\ (1 -1 0
[T1]=5<(1)>(5)(—1 1 0)=5<—1 1 0)

0 0 0
GETRIRE
ml=—=(1|(=)a 1 —2=3[1 1 =2
YA \e2 -2 4
1 11 1
[T3]=%<1>(\/%)(1 1 1)=§(1 1 1).
1 11 1

Noticethat T; + T, + T3 = I.



The spectral decomposition of A is:

4 2 2
A==<2 4 2>==
2 2 4

) 1 -1 0
= 5(—1 1 0)
0 0 O
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