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               Orthogonal Projections and the Spectral Theorem 

 

Def.  Let 𝑉1 and 𝑉2 be non-empty subsets of a vector space 𝑉 then: 

                          𝑉1 + 𝑉2 = {𝑣1 + 𝑣2| 𝑣1 ∈ 𝑉1,   𝑣2 ∈ 𝑉2}. 

 

Def.  A vector space 𝑉 is called the direct sum of 𝑉1 and 𝑉2, written 𝑉1 ⊕ 𝑉2, 
if 𝑉1 and 𝑉2 are subspaces of 𝑉 such that 𝑉1 ∩ 𝑉2 = {0} and 𝑉1 + 𝑉2 = 𝑉. 

 

Ex.  If 𝑉 = ℝ2, and 𝑉1 is spanned by < 1,0 > and 𝑉2 is spanned by < 0,1 >, 

then 𝑉1 = 𝑥-axis and  𝑉2 = 𝑦-axis and ℝ2 = 𝑉1 ⊕ 𝑉2 since 

           𝑉1 = {< 𝑎, 0 >| 𝑎 ∈ ℝ},      𝑉2 = {< 0, 𝑏 >| 𝑏 ∈ ℝ} 

and any vector < 𝑎, 𝑏 > in ℝ2 can be written as < 𝑎, 0 > +< 0, 𝑏 > 

and 𝑉1 ∩ 𝑉2 = {0}.  

 

Def.  Let 𝑉1 and 𝑉2 be subspaces of a vector space 𝑉 and 𝑉 = 𝑉1 ⊕ 𝑉2. 

𝑇: 𝑉 → 𝑉 is called a projection on 𝑽𝟏 along 𝑽𝟐 if for any 𝑣 = 𝑣1 + 𝑣2,             
𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 we have 𝑇(𝑣) = 𝑣1. 

 

Ex.  Suppose 𝑇: ℝ2 → ℝ2.  Then 𝑇(𝑎, 𝑏) = (𝑎, 0) is a projection on 

    𝑉1 = 𝑥-axis= {< 𝑎, 0 >| 𝑎 ∈ ℝ},  along  𝑉2 = 𝑦-axis= {< 0, 𝑏 >| 𝑏 ∈ ℝ}. 
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Ex.  Let 𝑇: 𝑉 → 𝑉,  with 

                     𝑉1 = 𝑅(𝑇) = {𝑣1 ∈ 𝑉| 𝑇(𝑤) = 𝑣1, for some 𝑤 ∈ 𝑉}   

                     𝑉2 = 𝑁(𝑇) = {𝑣2 ∈ 𝑉| 𝑇(𝑣2) = 0}. 

Then 𝑉 = 𝑅(𝑇) ⊕ 𝑁(𝑇) and 𝑇 is a projection on to  𝑉1 = 𝑅(𝑇) along    
𝑉2 = 𝑁(𝑇). 

 

Notice that  

                 𝑉 = 𝑉1 ⊕ 𝑉2 = 𝑉1 ⊕ 𝑉3  does NOT imply 𝑉2 = 𝑉3. 

For example, let 𝑉 = ℝ2, 

  𝑉1 = {< 𝑎, 0 >| 𝑎 ∈ ℝ}   

  𝑉2 = {< 0, 𝑏 > |  𝑏 ∈ ℝ}  

  𝑉3 = {< 𝑐, 𝑐 > | 𝑐 ∈ ℝ}. 

 

Since  < 1,0 >, < 0,1 > spans  ℝ2 and < 1,0 >, < 1,1 > spans ℝ2 every 
vector in ℝ2 can be written as 𝑣1 + 𝑣2,  𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 or                         
𝑣1 + 𝑣3,  𝑣1 ∈ 𝑉1, 𝑣3 ∈ 𝑉3.  In addition, 𝑉1 ∩ 𝑉2 = {0} and 𝑉1 ∩ 𝑉3 = {0}. 
so: 

                       𝑉 = 𝑉1 ⊕ 𝑉2 = 𝑉1 ⊕ 𝑉3,     but 𝑉2 ≠ 𝑉3. 

 

So 𝑉1 does not uniquely determine 𝑇. 
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We can make 𝑇 unique with the following definition. 

Def.  Let 𝑉 be a real inner product space and 𝑇: 𝑉 → 𝑉 a projection.  We say 

𝑇 is an orthogonal projection if 𝑅(𝑇)⊥ = 𝑁(𝑇) (which is equivalent to 

𝑁(𝑇)⊥ = 𝑅(𝑇)) where 𝑊⊥ means the set of vectors in 𝑉 perpendicular to 

all of the vectors in 𝑊 (this is also called the perpendicular complement of 

𝑊). 

 

To see the difference between a projection and an orthogonal projection, let 

𝑉1 = {< 𝑎, 𝑎 >| 𝑎 ∈ ℝ} ⊆ ℝ2.   We consider two projections of ℝ2 onto 

𝑉1. 

                 𝑆(𝑎, 𝑏) =< 𝑎, 𝑎 >     and      𝑇(𝑎, 𝑏) =<
𝑎+𝑏

2
 ,

𝑎+𝑏

2
> . 

 

 

   

  

 

 

 

 

𝑆 is a “vertical” projection onto 𝑉1 while 𝑇 is an orthogonal projection 

onto 𝑉1. That is, in general 𝑣 − 𝑆(𝑣) (green vector) is not perpendicular to 

𝑉1, while  𝑣 − 𝑇(𝑣) (purple vector) is perpendicular to 𝑉1. 

𝑣 

𝑆(𝑣) 

𝑇(𝑣) 

𝑣 − 𝑇(𝑣) 
𝑣 − 𝑆(𝑣) 
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In general, if we want to find the orthogonal projection of 𝑣 =< 𝑥, 𝑦 > onto a 

unit vector 𝑢 =< 𝑎, 𝑏 >, we know from Calculus 3 that: 

                       𝑃𝑟𝑜𝑗𝑢𝑣 = [
<𝑣,𝑢>

‖𝑢‖2 ] 𝑢 = [< 𝑣, 𝑢 >]𝑢. 

 

So if 𝑇 is a linear transformation mapping any vector  𝑣 ∈ ℝ2, 𝑣 =< 𝑥, 𝑦 >, 
onto its orthogonal projection onto a unit vector 𝑢 =< 𝑎, 𝑏 > we get: 

                      𝑇(𝑥, 𝑦) = [< 𝑥, 𝑦 >∙< 𝑎, 𝑏 >] < 𝑎, 𝑏 > 

                                      = (𝑎𝑥 + 𝑏𝑦) < 𝑎, 𝑏 > 

                                      =< 𝑎2𝑥 + 𝑎𝑏𝑦, 𝑎𝑏𝑥 + 𝑏2𝑦 >. 

 

So with respect to the standard ordered basis 𝛽 on ℝ2 we get: 

                                         𝑇(1,0) =< 𝑎2, 𝑎𝑏 > 

                                     𝑇(0,1) =< 𝑎𝑏, 𝑏2 > 

 

                                           [𝑇]𝛽 = (𝑎2 𝑎𝑏
𝑎𝑏 𝑏2). 

 

Notice that this is just: 

                𝑢𝑢𝑡 = (
𝑎
𝑏

) (𝑎 𝑏) = (𝑎2 𝑎𝑏
𝑎𝑏 𝑏2). 

In particular,  if 𝑢 is an eigenvector of length one, the orthogonal projection 

onto 𝑢 can be represented as:     𝑇 = 𝑢𝑢𝑡. 
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Spectral Theorem:  Suppose that 𝑇 is a linear operator on a real finite 

dimensional inner product space 𝑉 with distinct eigenvalues 𝜆1, … , 𝜆𝑘.  
Assume that 𝑇 is self-adjoint.  For each 𝑖, let 𝑉𝑖  be the eigenspace of 𝑇 

corresponding to 𝜆𝑖  and let 𝑇𝑖  be the orthogonal projection of 𝑉 onto 𝑉𝑖.  Then 
we have: 

a.   𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑘  

b.   If 𝑉𝑖
′ is the direct sum of the subspaces 𝑉𝑗 , 𝑗 ≠ 𝑖, then 𝑉𝑖

′ = 𝑉𝑖
⊥. 

c.    𝑇𝑖𝑇𝑗 = 𝛿𝑖𝑗𝑇𝑖;    1 ≤ 𝑖, 𝑗 ≤ 𝑘. 

d.    𝑇1 + 𝑇2 + ⋯ + 𝑇𝑘 = 𝐼 

e.   𝑇 = 𝜆1𝑇1 + 𝜆2𝑇2 + ⋯ + 𝜆𝑘𝑇𝑘. 

The set of eigenvalues {𝜆1, … , 𝜆𝑘} is called the spectrum of 𝑻,                               
𝐼 = 𝑇1 + 𝑇2+, , , +𝑇𝑘, is called the resolution of the identity and                   

𝑇 = 𝜆1𝑇1 + 𝜆2𝑇2 + ⋯ + 𝜆𝑘𝑇𝑘 is called the spectral decomposition of 𝑻. 

Let 𝛽 be the union of the orthonormal bases of the eigenspaces 𝑉𝑖, and let 

𝑚𝑖 = 𝑑𝑖𝑚𝑉𝑖 , then we have: 

                         [𝑇] 𝛽 = ((
𝜆1𝐼𝑚1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆𝑘𝐼𝑚𝑘

)). 

 

To find the spectral decomposition of 𝐴 = [𝑇]: 𝑉 → 𝑉: 

1. Find the eigenvalues of 𝐴 
2. Find the eigenvectors/eigenspaces of 𝐴 
3. Find an orthonormal basis of eigenvectors of 𝐴, 𝑢1, … , 𝑢𝑘  
4. Find the orthogonal projections 𝑇𝑖  of 𝑉 
5. Write 𝐴 = 𝜆1𝑇1 + 𝜆2𝑇2 + ⋯ + 𝜆𝑘𝑇𝑘, the spectral decomposition of 

𝐴.   
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Ex.  Find the spectral decomposition of 𝐴 = (
2 −2

−2 5
). 

 
In the section called “Normal and Self-Adjoint Operators” we found an 

orthonormal basis for ℝ2 of eigenvectors of 𝐴 (if we hadn’t, we would 
need to first find them for this matrix): 

                 𝑢1 =
1

√5
< 2,1 >,          associated with 𝜆1 = 1 

                 𝑢2 =
1

√5
< 1, −2 >,    associated with 𝜆2 = 6. 

 

          The spectral decomposition of 𝐴 is: 

                              𝐴 = 𝜆1[𝑇1] + 𝜆2[[𝑇2] ; 

          Where 𝑇1 is the orthogonal projection of ℝ2 on the eigenspace  

          spanned by 𝑢1 =
1

√5
< 2,1 > and  𝑇2 is the orthogonal     

         projection of ℝ2 on the eigenspace spanned by 𝑢2 =
1

√5
< 1, −2 >. 

 

        𝑇1 = [𝑢1][𝑢1]𝑡 =
1

√5
(

2
1

)
1

√5
(2 1) =

1

5
(

4 2
2 1

) 

       𝑇2 = [𝑢2][𝑢2]𝑡 =
1

√5
(

1
−2

)
1

√5
(1 −2) =

1

5
(

1 −2
−2 4

). 

       Notice that 𝑇1 + 𝑇2 = 𝐼. 

 

        So the spectral decomposition of 𝐴 is: 

                      𝐴 = (
2 −2

−2 5
) = 1 [

1

5
(

4 2
2 1

)] + 6[
1

5
(

1 −2
−2 4

)]. 
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Ex.  Find the spectral decomposition of 𝐴 = (
4 2 2
2 4 2
2 2 4

). 

 

        In the section called “Normal and Self-Adjoint Operators” we found an    

        orthonormal basis for ℝ3 of eigenvectors of 𝐴: 

                𝑢1 =
1

√2
< −1,1,0 >,            associated with 𝜆1 = 2 

                𝑢2 =
1

√6
< 1,1, −2 >,            associated with 𝜆2 = 2 

                𝑢3 =
1

√3
< 1,1,1 >,                 associated with 𝜆3 = 8. 

 
 

      We can find the orthogonal projections of ℝ3 onto each eigenvector by 

       𝑇𝑖 = 𝑢𝑖(𝑢𝑖)𝑡. 

                  [𝑇1] =
1

√2
(

−1
1
0

) (
1

√2
) (−1 1 0) =

1

2
(

1 −1 0
−1 1 0
0 0 0

) 

                  [𝑇2] =
1

√6
(

1
1

−2
) (

1

√6
) (1 1 −2) =

1

6
(

1 1 −2
1 1 −2

−2 −2 4
) 

                  [𝑇3] =
1

√3
(

1
1
1

) (
1

√3
) (1 1 1) =

1

3
(

1 1 1
1 1 1
1 1 1

). 

 

Notice that   𝑇1 + 𝑇2 + 𝑇3 = 𝐼. 
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The spectral decomposition of 𝐴 is: 

 

𝐴 = (
4 2 2
2 4 2
2 2 4

) =  

    = 2 [
1

2
(

1 −1 0
−1 1 0
0 0 0

)] + 2 [
1

6
(

1 1 −2
1 1 −2

−2 −2 4
)] + 8[

1

3
(

1 1 1
1 1 1
1 1 1

)]. 

 

 

 

   

 

 


