

Orthogonal Projections and the Spectral Theorem

Def. Let V_1 and V_2 be non-empty subsets of a vector space V then:

$$V_1 + V_2 = \{v_1 + v_2 \mid v_1 \in V_1, v_2 \in V_2\}.$$

Def. A vector space V is called the direct sum of V_1 and V_2 , written $V_1 \oplus V_2$, if V_1 and V_2 are subspaces of V such that $V_1 \cap V_2 = \{0\}$ and $V_1 + V_2 = V$.

Ex. If $V = \mathbb{R}^2$, and V_1 is spanned by $\langle 1, 0 \rangle$ and V_2 is spanned by $\langle 0, 1 \rangle$, then $V_1 = x\text{-axis}$ and $V_2 = y\text{-axis}$ and $\mathbb{R}^2 = V_1 \oplus V_2$ since

$$V_1 = \{\langle a, 0 \rangle \mid a \in \mathbb{R}\}, \quad V_2 = \{\langle 0, b \rangle \mid b \in \mathbb{R}\}$$

and any vector $\langle a, b \rangle$ in \mathbb{R}^2 can be written as $\langle a, 0 \rangle + \langle 0, b \rangle$

and $V_1 \cap V_2 = \{0\}$.

Def. Let V_1 and V_2 be subspaces of a vector space V and $V = V_1 \oplus V_2$.

$T: V \rightarrow V$ is called a **projection on V_1 along V_2** if for any $v = v_1 + v_2$, $v_1 \in V_1$, $v_2 \in V_2$ we have $T(v) = v_1$.

Ex. Suppose $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$. Then $T(a, b) = (a, 0)$ is a projection on

$V_1 = x\text{-axis} = \{\langle a, 0 \rangle \mid a \in \mathbb{R}\}$, along $V_2 = y\text{-axis} = \{\langle 0, b \rangle \mid b \in \mathbb{R}\}$.

Ex. Let $T: V \rightarrow V$, with

$$V_1 = R(T) = \{v_1 \in V \mid T(w) = v_1, \text{ for some } w \in V\}$$

$$V_2 = N(T) = \{v_2 \in V \mid T(v_2) = 0\}.$$

Then $V = R(T) \oplus N(T)$ and T is a projection on to $V_1 = R(T)$ along $V_2 = N(T)$.

Notice that

$$V = V_1 \oplus V_2 = V_1 \oplus V_3 \text{ does NOT imply } V_2 = V_3.$$

For example, let $V = \mathbb{R}^2$,

$$V_1 = \{ \langle a, 0 \rangle \mid a \in \mathbb{R} \}$$

$$V_2 = \{ \langle 0, b \rangle \mid b \in \mathbb{R} \}$$

$$V_3 = \{ \langle c, c \rangle \mid c \in \mathbb{R} \}.$$

Since $\langle 1, 0 \rangle, \langle 0, 1 \rangle$ spans \mathbb{R}^2 and $\langle 1, 0 \rangle, \langle 1, 1 \rangle$ spans \mathbb{R}^2 every vector in \mathbb{R}^2 can be written as $v_1 + v_2$, $v_1 \in V_1$, $v_2 \in V_2$ or $v_1 + v_3$, $v_1 \in V_1$, $v_3 \in V_3$. In addition, $V_1 \cap V_2 = \{0\}$ and $V_1 \cap V_3 = \{0\}$. so:

$$V = V_1 \oplus V_2 = V_1 \oplus V_3, \text{ but } V_2 \neq V_3.$$

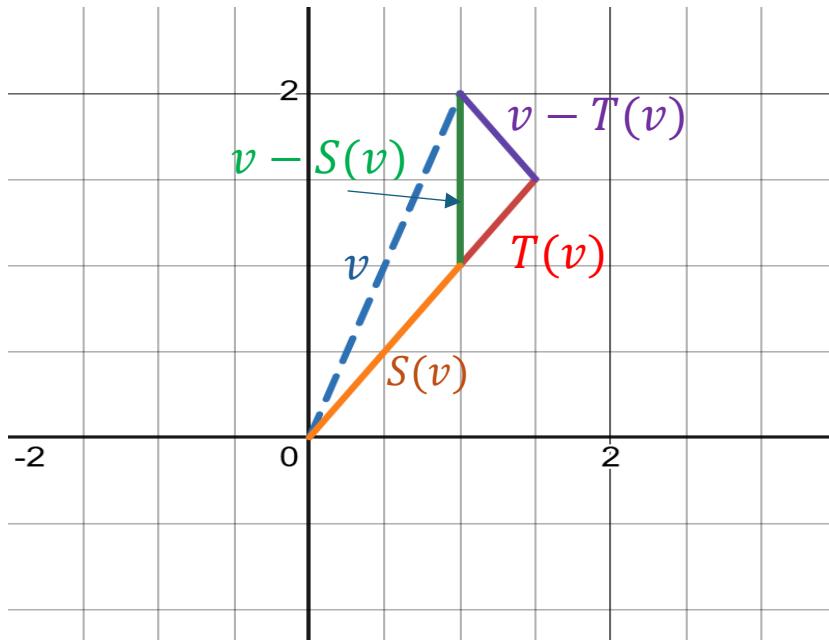
So V_1 does not uniquely determine T .

We can make T unique with the following definition.

Def. Let V be a real inner product space and $T: V \rightarrow V$ a projection. We say T is an **orthogonal projection** if $R(T)^\perp = N(T)$ (which is equivalent to $N(T)^\perp = R(T)$) where W^\perp means the set of vectors in V perpendicular to all of the vectors in W (this is also called the perpendicular complement of W).

To see the difference between a projection and an orthogonal projection, let $V_1 = \{ \langle a, a \rangle \mid a \in \mathbb{R} \} \subseteq \mathbb{R}^2$. We consider two projections of \mathbb{R}^2 onto V_1 .

$$S(a, b) = \langle a, a \rangle \quad \text{and} \quad T(a, b) = \left\langle \frac{a+b}{2}, \frac{a+b}{2} \right\rangle.$$



S is a “vertical” projection onto V_1 while T is an orthogonal projection onto V_1 . That is, in general $v - S(v)$ (green vector) is not perpendicular to V_1 , while $v - T(v)$ (purple vector) is perpendicular to V_1 .

In general, if we want to find the orthogonal projection of $v = \langle x, y \rangle$ onto a unit vector $u = \langle a, b \rangle$, we know from Calculus 3 that:

$$Proj_u v = \left[\frac{\langle v, u \rangle}{\|u\|^2} \right] u = [\langle v, u \rangle] u.$$

So if T is a linear transformation mapping any vector $v \in \mathbb{R}^2$, $v = \langle x, y \rangle$, onto its orthogonal projection onto a unit vector $u = \langle a, b \rangle$ we get:

$$\begin{aligned} T(x, y) &= [\langle x, y \rangle \cdot \langle a, b \rangle] \langle a, b \rangle \\ &= (ax + by) \langle a, b \rangle \\ &= \langle a^2x + aby, abx + b^2y \rangle. \end{aligned}$$

So with respect to the standard ordered basis β on \mathbb{R}^2 we get:

$$T(1,0) = \langle a^2, ab \rangle$$

$$T(0,1) = \langle ab, b^2 \rangle$$

$$[T]_{\beta} = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}.$$

Notice that this is just:

$$uu^t = \begin{pmatrix} a \\ b \end{pmatrix} (a \quad b) = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}.$$

In particular, if u is an eigenvector of length one, the orthogonal projection onto u can be represented as: $T = uu^t$.

Spectral Theorem: Suppose that T is a linear operator on a real finite dimensional inner product space V with distinct eigenvalues $\lambda_1, \dots, \lambda_k$. Assume that T is self-adjoint. For each i , let V_i be the eigenspace of T corresponding to λ_i and let T_i be the orthogonal projection of V onto V_i . Then we have:

- a. $V = V_1 \oplus \dots \oplus V_k$
- b. If V'_i is the direct sum of the subspaces V_j , $j \neq i$, then $V'_i = V_i^\perp$.
- c. $T_i T_j = \delta_{ij} T_i$; $1 \leq i, j \leq k$.
- d. $T_1 + T_2 + \dots + T_k = I$
- e. $T = \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k$.

The set of eigenvalues $\{\lambda_1, \dots, \lambda_k\}$ is called the **spectrum of T** , $I = T_1 + T_2 + \dots + T_k$, is called the **resolution of the identity** and $T = \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k$ is called the **spectral decomposition of T** .

Let β be the union of the orthonormal bases of the eigenspaces V_i , and let $m_i = \dim V_i$, then we have:

$$[T]_{\beta} = \begin{pmatrix} (\lambda_1 I_{m_1} & \dots & 0) \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_k I_{m_k} \end{pmatrix}.$$

To find the spectral decomposition of $A = [T]: V \rightarrow V$:

1. Find the eigenvalues of A
2. Find the eigenvectors/eigenspaces of A
3. Find an orthonormal basis of eigenvectors of A , u_1, \dots, u_k
4. Find the orthogonal projections T_i of V
5. Write $A = \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k$, the spectral decomposition of A .

Ex. Find the spectral decomposition of $A = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$.

In the section called “Normal and Self-Adjoint Operators” we found an orthonormal basis for \mathbb{R}^2 of eigenvectors of A (if we hadn’t, we would need to first find them for this matrix):

$$u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \text{associated with } \lambda_1 = 1$$

$$u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \quad \text{associated with } \lambda_2 = 6.$$

The spectral decomposition of A is:

$$A = \lambda_1[T_1] + \lambda_2[T_2];$$

Where T_1 is the orthogonal projection of \mathbb{R}^2 on the eigenspace

spanned by $u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and T_2 is the orthogonal projection of \mathbb{R}^2 on the eigenspace spanned by $u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

$$T_1 = [u_1][u_1]^t = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$$

$$T_2 = [u_2][u_2]^t = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ -2 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}.$$

Notice that $T_1 + T_2 = I$.

So the spectral decomposition of A is:

$$A = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix} = 1 \left[\frac{1}{5} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \right] + 6 \left[\frac{1}{5} \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \right].$$

Ex. Find the spectral decomposition of $A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$.

In the section called “Normal and Self-Adjoint Operators” we found an orthonormal basis for \mathbb{R}^3 of eigenvectors of A :

$$\begin{aligned} u_1 &= \frac{1}{\sqrt{2}} \langle -1, 1, 0 \rangle, & \text{associated with } \lambda_1 = 2 \\ u_2 &= \frac{1}{\sqrt{6}} \langle 1, 1, -2 \rangle, & \text{associated with } \lambda_2 = 2 \\ u_3 &= \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle, & \text{associated with } \lambda_3 = 8. \end{aligned}$$

We can find the orthogonal projections of \mathbb{R}^3 onto each eigenvector by $T_i = u_i(u_i)^t$.

$$\begin{aligned} [T_1] &= \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} (-1 \quad 1 \quad 0) = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ [T_2] &= \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} (1 \quad 1 \quad -2) = \frac{1}{6} \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix} \\ [T_3] &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} (1 \quad 1 \quad 1) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \end{aligned}$$

Notice that $T_1 + T_2 + T_3 = I$.

The spectral decomposition of A is:

$$\begin{aligned} A &= \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix} = \\ &= 2 \left[\frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right] + 2 \left[\frac{1}{6} \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix} \right] + 8 \left[\frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right]. \end{aligned}$$