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                                           Orthogonal Operators 

 

Def. Let 𝑇 be a linear operator on a real finite dimensional inner product space 

𝑉.  If ‖𝑇(𝑣)‖ = ‖𝑣‖ for all 𝑣 ∈ 𝑉, we call 𝑇 an orthogonal operator. 

So an orthogonal linear operator 𝑇 preserves lengths, i.e. ‖𝑇(𝑣)‖ = ‖𝑣‖. 

 

If  𝑇:ℝ2 → ℝ2 is a rotation or a reflection about a line through (0,0), then 𝑇 
is orthogonal as it preserves lengths. 

With respect to the standard ordered basis, 𝛽, in ℝ2: 

                        [𝑇]𝛽 = 𝐴: ℝ
2 → ℝ2,    where   𝐴 = (

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) 

         Is a rotation of the plane by 𝜃 and is thus orthogonal. 

 

                         [𝑇]𝛽 = 𝐴: ℝ
2 → ℝ2,      where    𝐴 = (1 0

0 −1
) 

         Is a reflection about the 𝑥-axis and hence orthogonal. 

 

Theorem:  Let 𝑇 be a linear operator on a real, finite dimensional, inner 

product space 𝑉. Then the following statements are equivalent. 

a. 𝑇𝑇∗ = 𝑇∗𝑇 = 𝐼 
b. < 𝑇(𝑣), 𝑇(𝑤) >=< 𝑣,𝑤 > for all 𝑣,𝑤 ∈ 𝑉 
c. If 𝛽 is an orthonormal basis for 𝑉, then so is 𝑇(𝛽). 
d. There exists an orthonormal basis for 𝑉 such that 𝑇(𝛽) is an 

orthonormal basis for 𝑉 
e. ‖𝑇(𝑣)‖ = ‖𝑣‖ for all 𝑣 ∈ 𝑉 
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Since the above 5 statements are equivalent, we could take any of them 
as the definition of an orthogonal operator. 
 
To prove this theorem we start with the following lemma: 
 
Lemma:  Let 𝑆 be a self-adjoint operator on a real finite dimensional 

inner product space 𝑉.  If  < 𝑉, 𝑆(𝑣) >= 0 for all 𝑣 ∈ 𝑉, then 𝑆 = 0 
(the linear transformation that maps all vectors in 𝑉 to zero).       
 
Proof:  By an earlier theorem we know that there exists an orthonormal 

basis 𝛽 of 𝑉 consisting of eigenvectors of 𝑆: 
                 𝛽 = {𝑢1, … , 𝑢𝑛},     where 𝑢𝑖  is an eigenvector of 𝑆.  
Thus,    𝑆(𝑢𝑖) = 𝜆𝑖𝑢𝑖,   1 ≤ 𝑖 ≤ 𝑛. 
 

By assumption:     0 =< 𝑢𝑖 , 𝑆(𝑢𝑖) > 
                                      =< 𝑢𝑖 , 𝜆𝑖𝑢𝑖 > 
                                      = 𝜆𝑖 < 𝑢𝑖 , 𝑢𝑖 > 
                                      = 𝜆𝑖                 (since  < 𝑢𝑖 , 𝑢𝑖 >= 1). 
 
Hence 𝑆(𝑢𝑖) = 𝜆𝑖𝑢𝑖 = 0,       1 ≤ 𝑖 ≤ 𝑛. 
Since 𝑆 maps all of the basis vectors to the zero vector, it must map all 

vectors in 𝑉 to the zero vector.  So 𝑆 = 0. 
 
Proof of theorem:  We will show 𝑎 ⟹ 𝑏 ⟹ 𝑐 ⟹ 𝑑 ⟹ 𝑒 ⟹ 𝑎. 

      𝑎 ⟹ 𝑏:        We assume  𝑇𝑇∗ = 𝑇∗𝑇 = 𝐼 and prove 

 < 𝑇(𝑣), 𝑇(𝑤) >=< 𝑣,𝑤 > for all 𝑣, 𝑤 ∈ 𝑉. 
 

           < 𝑣,𝑤 >=< 𝑇∗𝑇𝑣,𝑤 >             ( since 𝑇𝑇∗ = 𝐼) 
                                       =< 𝑇(𝑣), 𝑇(𝑤) >. 
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𝑏 ⟹ 𝑐:      We assume < 𝑇(𝑣), 𝑇(𝑤) >=< 𝑣,𝑤 > for all 𝑣,𝑤 ∈ 𝑉 and 

show If 𝛽 is an orthonormal basis for 𝑉, then so is 𝑇(𝛽). 

Let 𝛽 = {𝑢1, … , 𝑢𝑛} be an orthonormal basis for 𝑉.   Then we have: 

                 𝑇(𝛽) = {𝑇(𝑢1), … , 𝑇(𝑢𝑛)}. 

Since < 𝑇(𝑣), 𝑇(𝑤) >=< 𝑣,𝑤 > we have: 

              < 𝑇(𝑢𝑖), 𝑇(𝑢𝑗) >=< 𝑢𝑖 , 𝑢𝑗 >= 𝛿𝑖𝑗. 

Therefore, 𝑇(𝛽) is an orthonormal basis for 𝑉. 

 

      𝑐 ⟹ 𝑑:        We assume If 𝛽 is an orthonormal basis for 𝑉, then so is 𝑇 and 

we show there exists an orthonormal basis for 𝑉 such that 𝑇(𝛽) is an   

orthonormal basis for 𝑉. 

We know that for any finite dimensional real inner product space 𝑉 that there 
exists an orthonormal basis (from the Gram-Schmidt orthonormalization 
process).  Therefore we get 𝑑 from 𝑐. 

 

𝑑 ⟹ 𝑒:   We assume there exists an orthonormal basis for 𝑉 such that 𝑇(𝛽) 
is an orthonormal basis for 𝑉, and we show ‖𝑇(𝑣)‖ = ‖𝑣‖ for all 𝑣 ∈ 𝑉. 

Let 𝑣 ∈ 𝑉 and 𝛽 = {𝑢1, … , 𝑢𝑛} an orthonormal basis for 𝑉. 

Then we can write:        𝑣 = ∑ 𝑎𝑖𝑢𝑖
𝑛
𝑖=1 .   So we have 

                 ‖𝑣‖2 =< 𝑣, 𝑣 >=< ∑ 𝑎𝑖𝑢𝑖
𝑛
𝑖=1 , ∑ 𝑎𝑗𝑢𝑗

𝑛
𝑗=1 > 

                                                = ∑ ∑ 𝑎𝑖𝑎𝑗 < 𝑢𝑖 , 𝑢𝑗 >
𝑛
𝑗=1

𝑛
𝑖=1  

                                                = ∑ ∑ 𝑎𝑖𝑎𝑗𝛿𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1      (because 𝛽 is orthonormal) 

                                                 = ∑ |𝑎𝑖|
2𝑛

𝑖=1 . 
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Similarly,  since 𝑇(𝛽) = {𝑇(𝑢1), … , 𝑇(𝑢𝑛)} is an orthonormal basis for 𝑉: 

              𝑇(𝑣) = 𝑇(∑ 𝑎𝑖𝑢𝑖
𝑛
𝑖=1 ) 

                        = ∑ 𝑎𝑖𝑇(𝑢𝑖)
𝑛
𝑖=1 . 

Thus we have: 

      ‖𝑇(𝑣)‖2 =< 𝑇(𝑣), 𝑇(𝑣) >=< ∑ 𝑎𝑖𝑇(𝑢𝑖)
𝑛
𝑖=1 , ∑ 𝑎𝑗𝑇(𝑢𝑗)

𝑛
𝑗=1 >    

                                                                   = ∑ ∑ 𝑎𝑖𝑎𝑗𝛿𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1      (𝑇(𝛽) is orthonormal) 

                                                                   = ∑ |𝑎𝑖|
2𝑛

𝑖=1 = ‖𝑣‖2. 

Thus  ‖𝑇(𝑣)‖ = ‖𝑣‖ for all 𝑣 ∈ 𝑉. 

 

𝑒 ⟹ 𝑎:      We assume  ‖𝑇(𝑣)‖ = ‖𝑣‖ for all 𝑣 ∈ 𝑉, and we show                  

                    𝑇𝑇∗ = 𝑇∗𝑇 = 𝐼. 

                  Let 𝑣 ∈ 𝑉 then 

                            < 𝑣, 𝑣 >= ‖𝑣‖2 = ‖𝑇(𝑣)‖2 

                                                              =< 𝑇(𝑣), 𝑇(𝑣) > 

                                                               =< 𝑣, 𝑇∗𝑇(𝑣) >. 

So we have:        < 𝑣, 𝑣 > −< 𝑣, 𝑇∗𝑇(𝑣) >= 0 

                                  < 𝑣, (𝐼 − 𝑇∗𝑇)(𝑣) >= 0       (for all 𝑣 ∈ 𝑉). 

But our lemma says that if 𝑆 = 𝐼 − 𝑇∗𝑇, then 

                         0 =< 𝑣, 𝑆(𝑣) >  for all 𝑣 ∈ 𝑉  then 𝑆 = 0. 

Thus      𝐼 − 𝑇∗𝑇 = 0     ⟹    𝑇∗𝑇 = 𝐼. 

Since 𝑉 is a finite dimensional vector space we know that: 

                           𝑇∗𝑇 = 𝐼      ⟹    𝑇𝑇∗ = 𝐼. 
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Corollary:  Let 𝑇 be a linear operator on a real, finite dimensional, inner 

product space 𝑉.  Then 𝑉 has an orthonormal basis of eigenvectors of 𝑇 with 

corresponding eigenvalues of absolute value one if and only if 𝑇 is self-adjoint 
and orthogonal. 

 

Proof.  Suppose 𝑉 has an orthonormal basis {𝑢1, … , 𝑢𝑛} such that: 

                         𝑇(𝑢𝑖) = 𝜆𝑖𝑢𝑖,    and   |𝜆𝑖| = 1,   1 ≤ 𝑖 ≤ 𝑛.   

We need to show that 𝑇 is self-adjoint and orthogonal. 

 

We know by an earlier theorem that 𝑇 is self-adjoint.  

 

To show that 𝑇 is orthogonal: 

                           (𝑇𝑇∗)(𝑢𝑖) = 𝑇(𝜆𝑖𝑢𝑖) 

                                              = 𝜆𝑖𝑇(𝑢𝑖) 

                                               = 𝜆𝑖𝜆𝑖𝑢𝑖  

                                                = 𝜆𝑖
2𝑢𝑖    

                                                 = 𝑢𝑖              (since |𝜆𝑖| = 1). 

So  𝑇𝑇∗ = 𝐼 for all of the basis vector and hence for all of 𝑉. 

 

Since 𝑉 is finite dimensional,     𝑇𝑇∗ = 𝐼    ⟹    𝑇∗𝑇 = 𝐼. 

 

So 𝑇 is orthogonal. 
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Now assume that 𝑇 is self-adjoint and orthogonal and let’s show that 𝑉 has 

an orthonormal basis {𝑢1, … , 𝑢𝑛} of eigenvectors of 𝑇 with corresponding 
eigenvalues of absolute value one. 

By an earlier theorem since 𝑇 is self-adjoint, 𝑉 has an orthonormal basis of 

eigenvectors {𝑢1, … , 𝑢𝑛} of 𝑇.  Thus 𝑇(𝑢𝑖) = 𝜆𝑖𝑢𝑖 ,   1 ≤ 𝑖 ≤ 𝑛. 

So we have we have: 

                |𝜆𝑖|‖𝑢𝑖‖ = ‖𝜆𝑖𝑢𝑖‖ 

                                  = ‖𝑇(𝑢𝑖)‖ 

                                  = ‖𝑢𝑖‖           (since 𝑇 is orthogonal), 

So   |𝜆𝑖| = 1,  for 1 ≤ 𝑖 ≤ 𝑛.  

 

Def.  A square matrix 𝐴 with real entries is called orthogonal if  

        𝐴𝐴𝑡 = 𝐴𝑡𝐴 = 𝐼. 

 

Ex.  Show 𝑇:ℝ2 → ℝ2,  a rotation by 𝜃, is orthogonal but not self-adjoint 

(and therefore does not have an orthonormal basis of eigenvectors of 𝑇) 

 

With respect to the standard ordered basis, 𝛽, on ℝ2,  

                      [𝑇]𝛽 = 𝐴 = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

). 

So 𝐴𝑡 is:                    𝐴𝑡 = ( 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

). 
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𝐴𝐴𝑡 = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

)  

         = (cos
2 𝜃 + sin2 𝜃 0
0 cos2 𝜃 + sin2 𝜃

) = (
1 0
0 1

). 

 

Similarly,  𝐴𝑡𝐴 = (1 0
0 1

). 

So 𝑇 (and 𝐴) are orthogonal.    

However,    𝐴𝑡 ≠ 𝐴, so 𝐴 is not self-adjoint.  

 

Ex.  Show the reflection about the 𝑥-axis given by [𝑇]𝛽 = 𝐴: ℝ
2 → ℝ2,      

where 𝐴 = (1 0
0 −1

), and 𝛽 is the standard ordered basis for ℝ2, is both 

self-adjoint and orthogonal.   

 

𝐴𝑡 = (
1 0
0 −1

) = 𝐴 ,  so 𝐴 (and 𝑇) are self-adjoint. 

𝐴𝑡𝐴 = (
1 0
0 −1

) (
1 0
0 −1

) = (
1 0
0 1

) = 𝐴𝐴𝑡. 

So 𝐴 (and 𝑇) are orthogonal.  

 

By our theorem ℝ2 has an orthonormal basis of eigenvectors of 𝑇 (in the 
above example). 

However,  𝐴 is already diagonal with respect to the standard basis, thus     
𝛽 = {< 1,0 >,< 0,1 >}, is an orthonormal basis of ℝ2 with the 

eigenvectors of 𝑇 (and 𝐴). 
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               Notice that for an orthogonal matrix 𝐴, the rows and the columns each 
form a set of orthonormal vectors.  We can see this for 2x2 matrices as 
follows: 

      𝐴𝐴𝑡 = 𝐼 = (
1 0
0 1

) ,       𝐴 = (
𝑎 𝑏
𝑐 𝑑

),      𝐴𝑡 = (
𝑎 𝑐
𝑏 𝑑

). 

     𝐴𝐴𝑡 = (𝑎 𝑏
𝑐 𝑑

) (
𝑎 𝑏
𝑐 𝑑

) = (𝑎
2 + 𝑏2 𝑎𝑐 + 𝑏𝑑
𝑎𝑐 + 𝑏𝑑 𝑐2 + 𝑑2

) = (
1 0
0 1

). 

Equating the components of the matrices we get: 

1 = 𝑎2 + 𝑏2 = ‖< 𝑎, 𝑏 >‖2     ⟹    ‖< 𝑎, 𝑏 >‖ = 1 

1 = 𝑐2 + 𝑑2 = ‖< 𝑐, 𝑑 >‖2        ⟹    ‖< 𝑐, 𝑑 >‖ = 1 

0 = 𝑎𝑐 + 𝑏𝑑 =≪ 𝑎, 𝑏 >,< 𝑐, 𝑑 ≫ . 

The equations above say that the row vectors of 𝐴 form an orthonormal set. 

A similar result for the column vectors of 𝐴 follows from 𝐴𝑡𝐴 = 𝐼. 

 

Earlier we saw that the matrix 𝐴 = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) was orthogonal. 

Notice that the row vectors:  < 𝑐𝑜𝑠𝜃,−𝑠𝑖𝑛𝜃 >,< 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 >, form an 
orthonormal set and the column vectors: 

 < 𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃 >,< −𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 >, form an orthonormal set. 

 

Def.  We say a matrix 𝐴 is orthogonally equivalent to a diagonal matrix 𝐷 if 

there exists an orthogonal matrix 𝑃 such that 𝐴 = 𝑃−1𝐷𝑃 = 𝑃𝑡𝐷𝑃. (for an 

orthogonal matrix 𝑃𝑃𝑡 = 𝐼, thus 𝑃𝑡 = 𝑃−1). 
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Theorem:  Let 𝐴 be a real 𝑛x𝑛 matrix.  Then 𝐴 is symmetric (ie self-adjoint) if 

and only if 𝐴 is orthogonally equivalent to a real diagonal matrix. 

 

Proof:  We already know that if 𝐴 is a symmetric matrix (i.e. self-adjoint) that 

there exists an orthonormal basis 𝛽 of 𝑉 made up of eigenvectors of 𝐴. 

 

The matrix 𝑃 whose columns are the vectors in 𝛽 gives us 𝐷 = 𝑃−1𝐴𝑃, 
where 𝐷 is diagonal and has real numbers (eigenvalues) along the diagonal. 

 

But since the columns of 𝑃 are orthonormal, it follows that 𝑃 is orthogonal     

(ie 𝑃𝑡 = 𝑃−1). 

 

Thus if 𝐴 is symmetric then it is orthogonally equivalent to a real diagonal 
matrix.  

 

 

Now let’s assume that 𝐴 is orthogonally equivalent to a diagonal matrix 𝐷 and 

show that 𝐴 is symmetric. 

                               𝐴 = 𝑃𝑡𝐷𝑃 

                              𝐴𝑡 = (𝑃𝑡𝐷𝑃)𝑡 = 𝑃𝑡𝐷𝑡𝑃 

But 𝐷 is a diagonal matrix so 𝐷𝑡 = 𝐷.  So we have: 

                               𝐴𝑡 = 𝑃𝑡𝐷𝑃 

                                  = 𝐴. 

So 𝐴 is symmetric. 
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Ex.  Let 𝐴 = (
4 2 2
2 4 2
2 2 4

).  Find an orthogonal matrix 𝑃 that diagonalizes 𝐴, 

ie  𝑃𝑡𝐴𝑃 = 𝐷. 

 

Start by finding the eigenvalues of 𝐴. 

𝐷𝑒𝑡(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 (
4 − 𝜆 2 2
2 4 − 𝜆 2
2 2 4 − 𝜆

)  

   = (4 − 𝜆)[(4 − 𝜆)(4 − 𝜆) − 4] − 2[2(4 − 𝜆) − 4] + 2[4 − 2(4 − 𝜆)] 

  = (4 − 𝜆)[𝜆2 − 8𝜆 + 12] − 8 + 4𝜆 − 8 + 4𝜆 

   = (4 − 𝜆)(𝜆 − 2)(𝜆 − 6) + 8(𝜆 − 2)  

   = (𝜆 − 2)[(4 − 𝜆)( 𝜆 − 6) + 8] 

   = −(𝜆 − 2)2(𝜆 − 8). 

So the eigenvalues of 𝐴 are 𝜆 = 2,8. 

 

Now find an orthonormal basis for the eigenspaces. 

𝜆1 = 2:      𝐴 − 2𝐼 = (
2 2 2
2 2 2
2 2 2

) ;           so we solve: 

 

   (
2 2 2
2 2 2
2 2 2

)(

𝑎1
𝑎2
𝑎3
) = (

0
0
0
)         ⟹         𝑎1 = −𝑎2 − 𝑎3. 

 



11 
 

Thus the eigenspace associated with 𝜆1 = 2 is vectors of the form: 

                < 𝑎2 − 𝑎3, 𝑎2, 𝑎3 >= 𝑎2 < −1,1,0 > +𝑎3 < −1,0,1 >. 

So {< −1,1,0 >,< −1,0,1 >}  span the eigenspace and form a basis. 

However, these vectors are neither unit length nor orthogonal. 

We can take the first vector and use the Gram-Schmid process to find a 
second vector that spans the same space, but are orthogonal.  Doing this we 

find:          𝑣1 =< −1,1,0 > ,     𝑣2 =< 1,1,−2 >. 

Dividing each vector by its length we get an orthonormal basis for the 

eigenspace associated with 𝜆1 = 2: 

                 𝑢1 =
1

√2
< −1,1,0 >,         𝑢2 =

1

√6
< 1,1, −2 >. 

 

𝜆2 = 8:        𝐴 − 8𝐼 = (
−4 2 2
2 −4 2
2 2 −4

) ;           so we solve: 

 

                       (
−4 2 2
2 −4 2
2 2 −4

)(

𝑎1
𝑎2
𝑎3
) = (

0
0
0
)         ⟹         𝑎1 = 𝑎2 = 𝑎3. 

Thus the eigenspace associated with 𝜆2 = 8 is vectors of the form: 

                                   < 𝑎1, 𝑎1, 𝑎1 >= 𝑎1 < 1,1,1 >. 

Notice the < 1,1,1 > is already orthogonal to 𝑢1, 𝑢2 (eigenvectors from 
different eigenvalues are always orthogonal). 

Dividing by the length of 𝑣3 =< 1,1,1 >, we get an orthonormal basis for ℝ3: 

    𝑢1 =
1

√2
< −1,1,0 >,         𝑢2 =

1

√6
< 1,1,−2 > ,     𝑢3 =

1

√3
< 1,1,1 >. 
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𝑢1, 𝑢2, 𝑢3 is an orthonormal basis of eigenvectors of 𝐴, so a matrix that 

diagonalizes 𝐴 is: 

                        𝑃 =

(

 
 
−

1

√2

1

√6

1

√3

  
1

√2

1

√6

1

√3

  0 −
2

√6

1

√3)

 
 

;       and  

 

            𝑃𝑡𝐴𝑃 = 𝑃−1𝐴𝑃 = (
2 0 0
0 2 0
0 0 8

), 

Where 𝑃 is orthogonal because its columns are orthonormal. 

 

 

 

 

 

 

 

  

 

 

 

 

 


