Orthogonal Operators

Def. Let T be a linear operator on a real finite dimensional inner product space
V. if[|IT(v)|| = |lv|| forallv € V,we call T an orthogonal operator.

So an orthogonal linear operator T preserves lengths, i.e. ||T (v)|| = ||v]].

If T: R? - R?is a rotation or a reflection about a line through (0,0), then T
is orthogonal as it preserves lengths.

With respect to the standard ordered basis, S, in R?:

A D2 2 _ cos@ —sinf
[T]s = A: R? > R2, where A (Smg cose)

Is a rotation of the plane by 8 and is thus orthogonal.

— 4.2 2 _(1 0
[Tl = A: R* > R?,  where A—(O _1)

Is a reflection about the x-axis and hence orthogonal.

Theorem: Let T be a linear operator on a real, finite dimensional, inner
product space V. Then the following statements are equivalent.

TT* =TT =1

< TW), T(w) >=<v,w >forallv,w €V

If B is an orthonormal basis for V, then sois T ().

QO 0o T o

. There exists an orthonormal basis for V such that T () is an
orthonormal basis for IV
e. |[TW)|| = |lv|| forallv € V



Since the above 5 statements are equivalent, we could take any of them
as the definition of an orthogonal operator.

To prove this theorem we start with the following lemma:

Lemma: LetS be a self-adjoint operator on a real finite dimensional
inner productspace V. If < V,S(v) >=0forallv € VV,thenS =0

(the linear transformation that maps all vectors in V to zero).

Proof: By an earlier theorem we know that there exists an orthonormal

basis § of VV consisting of eigenvectors of S:
B ={uq,..,u,}, whereu; isan eigenvectorof S.
Thus, S(ui) = )ll-ui, 1<i<n.

By assumption: 0 =<u;, S(u;) >
=< u;, Aju; >
= A <u,u; >
= A (since < u;,u; >=1).

Hence S(ui) = Aiui =0, 1<i<n.
Since S maps all of the basis vectors to the zero vector, it must map all

vectors in V/ to the zero vector. So S = 0.

Proof of theorem: We willshowa = b =>c=d = e = a.
a=b: Weassume TT" =T"T =1 and prove
<TWw), Tw) >=<v,w >forallv,w € V.

<v,w>=<T'Tv,w > (sinceTT* =1)
=<T(w), T(w) >.



b= c: Weassume< T(v), T(w) >=<v,w >forallv,w € V and

show If 3 is an orthonormal basis for V, then so is T (3).
Let B = {uy, ..., U, } be an orthonormal basis for V. Then we have:
T(B) ={T(wy), ..., T(un)}.
Since < T(v), T(w) >=< v,w > we have:
< T(ui),T(uj) >=<u;, u; >= 6§;;.

Therefore, T () is an orthonormal basis for V.

c =d: Weassume If § is an orthonormal basis for V, then sois T and
we show there exists an orthonormal basis for IV such that T () is an

orthonormal basis for I/.

We know that for any finite dimensional real inner product space V that there
exists an orthonormal basis (from the Gram-Schmidt orthonormalization
process). Therefore we get d from c.

d = e: We assume there exists an orthonormal basis for V such that T (f3)

is an orthonormal basis for V, and we show ||T (v)|| = ||v]| forallv € V.
Letv € Vand f = {u4, ..., U, } an orthonormal basis for V.

Then we canwrite: v = ?:1 a;u;. Sowe have

vl =<v,v >=< XL aqu;, Xj,a

jU,' >

—_ n n
= i=1zj=1 aiaj < ui,uj >
= Yiz1 2j=14;a;8;; (because B is orthonormal)

— n



Similarly, since T(8) = {T'(u,), ..., T(u,,)} is an orthonormal basis for V:
T(v) = T(Xiz, aiu;)
= Xi=1 a; T (up).
Thus we have:
IT@II? =<T®),T(w) >=< X a;T(Ww;), Xj—y 4T (w;) >

=Yt 2}7:1 a;a;6;; (T(P) isorthonormal)

= Yiqla]® = |lvll?.
Thus [|T(v)|| = ||v|| forallv € V.
e = a: Weassume ||[T(v)|| = ||v]|| forallv € V, and we show

TT =TT =1.
Letv € V then
<wv,v>= || =TW)I?
=<TW), T(v) >
=<v,T*T(v) >.
Sowehave: <v,v>-—<v,TT(w)>=0
<v,U-T'T)(v) >=0 (forallv € V).
But our lemma saysthatif S =1 — T*T, then
0 =<v,S(w) > forallv € V thenS = 0.
Thus [ —=T'T=0 = T'T=1I.
Since I is afinite dimensional vector space we know that:

T'"T=1 = TT"=1I.



Corollary: Let T be a linear operator on a real, finite dimensional, inner
product space V. Then I/ has an orthonormal basis of eigenvectors of T with

corresponding eigenvalues of absolute value one if and only if T is self-adjoint
and orthogonal.

Proof. Suppose V has an orthonormal basis {4, ..., U, } such that:
T(ul) = )ll-ui, and |/‘ll| = 1, 1<i<n.

We need to show that T is self-adjoint and orthogonal.

We know by an earlier theorem that T is self-adjoint.

To show that T is orthogonal:

(TT*)(u;) = T(Au;)
= 4T (w;)

= U; (since [4;] = 1).

So TT* = I for all of the basis vector and hence for all of V.

Since V is finite dimensional, TT* =1 = T*T =1.

So T is orthogonal.



Now assume that T is self-adjoint and orthogonal and let’s show that V' has

an orthonormal basis {ul, . un} of eigenvectors of T with corresponding
eigenvalues of absolute value one.

By an earlier theorem since T is self-adjoint, I/ has an orthonormal basis of
eigenvectors {uq, ..., Uy} of T. ThusT(u;) = A4ju;, 1 <i<n.

So we have we have:
1Al llwg |l = 1140l
= [T )l
= ||u; || (since T is orthogonal),

So |[A;|=1,forl <i<n.

Def. A square matrix A with real entries is called orthogonal if

AA = A'A =1,

Ex. Show T: R? — ]RZ, a rotation by 6, is orthogonal but not self-adjoint

(and therefore does not have an orthonormal basis of eigenvectors of T)

With respect to the standard ordered basis, ,6’, on ]Rz,

_ . _ (cosB —sinf
Tlg=4= (sinH cos6 )

tig. t _ ( cosd sinb
So A'is: A (—SinH COSH)'



t _ (cos@ —sinf\ (cosf  sinb
Ad (sinQ cos6 )(—sinH COSH)
_ (cos2 6 + sin” 6 0 ) _ (1 O)
0 cos? 0 + sin? @ 0 1/

Similarly, A*A = ((1) (1))

So T (and A) are orthogonal.

However, A® # A, so A is not self-adjoint.

Ex. Show the reflection about the x-axis given by [T] 5 = A: R? - R?,
1 0
0 -1

self-adjoint and orthogonal.

where A = ( ), and [8 is the standard ordered basis for R?, is both

1 0 -
At = (O _1) = A, so A (and T) are self-adjoint.

wa=(d 06 2= D=

So A (and T') are orthogonal.

By our theorem R? has an orthonormal basis of eigenvectors of T (in the
above example).

However, A is already diagonal with respect to the standard basis, thus
f = {< 1,0 >,< 0,1 >}, is an orthonormal basis of R? with the

eigenvectors of T (and A).



Notice that for an orthogonal matrix A, the rows and the columns each
form a set of orthonormal vectors. We can see this for 2x2 matrices as
follows:

mi=i=( 0. a=( Y w=( 9

=0 D D=Gelpe E18)=6 D

Equating the components of the matrices we get:
1=a’+b’=|<ab>|> = |l<ab>|=1
1=c?+d?’=||<c,d>|? = |<cd>|=1

O0=ac+bd =< a,b ><c,d>.

The equations above say that the row vectors of A form an orthonormal set.

A similar result for the column vectors of 4 follows from At4 = 1.

cosf —sinf

. was orthogonal.
sin@ cos@ ) g

Earlier we saw that the matrix A = (

Notice that the row vectors: < cosf, —sinf >, < sinf,cosf >, form an
orthonormal set and the column vectors:

< c0s0,sinf >,< —sinf, cosf >, form an orthonormal set.

Def. We say a matrix A is orthogonally equivalent to a diagonal matrix D if
there exists an orthogonal matrix P suchthat A = P"1DP = PtDP. (foran
orthogonal matrix PPt = [, thus Pt = P™1).



Theorem: Let A be a real nxn matrix. Then 4 is symmetric (ie self-adjoint) if

and only if A is orthogonally equivalent to a real diagonal matrix.

Proof: We already know that if A is a symmetric matrix (i.e. self-adjoint) that

there exists an orthonormal basis § of I/ made up of eigenvectors of A.

The matrix P whose columns are the vectors in 5 givesus D = P~1AP,

where D is diagonal and has real numbers (eigenvalues) along the diagonal.

But since the columns of P are orthonormal, it follows that P is orthogonal
(ie Pt = P~ 1).

Thus if A is symmetric then itis orthogonally equivalent to a real diagonal
matrix.

Now let’s assume that A is orthogonally equivalent to a diagonal matrix D and

show that A is symmetric.
A= PtDP
At = (PtDP)t = PtDtP
But D is a diagonal matrix so Dt = D. So we have:
At = PIDP
= A.

So A is symmetric.
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4 2 2

Ex. Let4A = (2 4 2). Find an orthogonal matrix P that diagonalizes A,
2 2 4

ie PLAP = D.

Start by finding the eigenvalues of A.

4 — 2 2 2
Det(A—/U)=det< 2 4 — 2 2 >
2 2 4 -2

=U-DH@-DU@-1)—-4]-2[24-1) —4]+2[4-2(4 - 1)]
=(4-D)[A*-81+12]—-8+41—-8+42
=U4-1DA-2)1-6)+8(1—-2)
=A-2)[4—-A)(A1—-6)+8]

=—-(1-2)%2(1—8).

So the eigenvalues of A are A = 2,8.

Now find an orthonormal basis for the eigenspaces.

2 2 2
M=2: A=-21=|2 2 2]|; so we solve:
2 2 2

2 2 2\ /41 0
(2 2 2) <a2> - <0> = a, = —a; — as.
2 2 2/ \a3 0
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Thus the eigenspace associated with A; = 2 is vectors of the form:

<a,—as,a,a3;>=a, <-—110> +a; <—-1,0,1 >.
So{< —1,1,0 >,< —1,0,1 >} span the eigenspace and form a basis.
However, these vectors are neither unit length nor orthogonal.

We can take the first vector and use the Gram-Schmid process to find a
second vector that spans the same space, but are orthogonal. Doing this we

find: v, =<-1,1,0>, v,=<11-2>.

Dividing each vector by its length we get an orthonormal basis for the

eigenspace associated with 1, = 2:

1 1

U =7 <-1,1,0 >, U = = <11,-2 >.
-4 2 2
A, = 8: A-8lI=|2 -4 2 |; so we solve:
2 2 —4

—4 2 2 a; 0
< 2 —4 2 )(az = 0) = a, = a; = as.
2 2 —4/ \43 0

Thus the eigenspace associated with A, = 8 is vectors of the form:
< a;,aq, aq >= a, < 1,1,1 >.

Notice the < 1,1,1 > is already orthogonal to U4, U, (eigenvectors from
different eigenvalues are always orthogonal).

Dividing by the length of v; =< 1,1,1 >, we get an orthonormal basis for R3:

U =—=<-110> w=—=<11,-2>, us =v—1§

5 NG <111 >.
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U4, Uy, U3 is an orthonormal basis of eigenvectors of A, so a matrix that

diagonalizes A is:

.t 1 1

Z V6

po| L L |
=\ & % W[ @

0 _2 1

%

2 0 0
PfAP=P—1AP=<0 2 0>,
0 0 8

Where P is orthogonal because its columns are orthonormal.



