

Normal and Self-Adjoint Operators

In the section called “Eigenvalues and Eigenvectors” we saw that for a finite dimensional vector space V , a linear operator $T: V \rightarrow V$ was diagonalizable if and only if there exists an ordered basis $\beta = \{v_1, \dots, v_n\}$ for V of eigenvectors of T . Thus it is natural to ask under what conditions does a finite dimensional inner product space V over \mathbb{R} have an orthonormal basis of eigenvectors?

To determine the conditions for V to have an orthonormal basis of eigenvectors of a linear operator T we start with the following lemma.

Lemma: Let $T: V \rightarrow V$ be a linear operator on a real finite dimensional inner product space. If T has an eigenvector then so does T^* .

Proof: Suppose $v \in V$ is an eigenvector of T corresponding to the eigenvalue λ .

Then for any $w \in V$ we have:

$$\begin{aligned} 0 &= \langle 0, w \rangle = \langle (T - \lambda I)(v), w \rangle \\ &= \langle v, (T - \lambda I)^*(w) \rangle \\ &= \langle v, (T^* - \lambda I)(w) \rangle. \end{aligned}$$

So v is perpendicular to the null space of $T^* - \lambda I$.

So $T^* - \lambda I$ is not onto and hence not 1-1.

Hence $T^* - \lambda I$ has a nonzero null space.

Notice that any nonzero vector in the null space of $T^* - \lambda I$ is an eigenvector of T^* corresponding to λ .

A proof of the following theorem can be done by induction on the dimension of V .

Theorem (Schur's Theorem): Let $T: V \rightarrow V$ be a linear operator on a real finite dimensional inner product space V . Suppose that the characteristic polynomial of T splits (i.e., $\det(A - \lambda I) = c(\lambda - a_1) \cdots (\lambda - a_n)$, where $A = [T]$). Then there exists an orthonormal basis β of V such that $[T]_\beta$ is upper triangular.

Our goal is to find an orthonormal basis β for the real inner product space V so that for the linear operator $T: V \rightarrow V$, $[T]_\beta$ is diagonal. Notice that if there is an orthonormal basis β such that $[T]_\beta$ is diagonal, then since $[T^*]_\beta = [T]_\beta^*$ (from a theorem in the previous section), $[T^*]_\beta$ is also diagonal. In addition, since diagonal matrices commute, T and T^* commute, i.e. $TT^* = T^*T$.

Def. Let V be a real inner product space and $T: V \rightarrow V$ a linear operator. We say T is **normal** $TT^* = T^*T$. An $n \times n$ real matrix A is called **normal** if $AA^* = A^*A$.

Recall that a real matrix A is called **symmetric** if $A = A^t = A^*$. A real matrix A is called **skew symmetric** if $A = -A^t = -A^*$.

Ex. Show that if a real matrix A is skew symmetric then A is normal.

Since $A = -A^*$ we have: $AA^* = -A^2$, and $A^*A = -A^2$ so $AA^* = A^*A$, and A is normal.

Ex. Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a rotation by θ , $0 < \theta < \pi$. If β is the standard ordered basis then $[T]_\beta = A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$. Show that A is normal.

Notice that:

$$AA^* = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A^*A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

So $AA^* = A^*A = I$, hence A is normal.

Notice that $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$; $0 < \theta < \pi$, has no eigenvectors since:

$$\begin{aligned} \det(A - \lambda I) &= \det \begin{pmatrix} \cos\theta - \lambda & -\sin\theta \\ \sin\theta & \cos\theta - \lambda \end{pmatrix} \\ &= (\cos\theta - \lambda)^2 + \sin^2 \theta \\ &= \lambda^2 - 2\lambda\cos\theta + 1. \end{aligned}$$

Using the quadratic formula to solve $\lambda^2 - 2\lambda\cos\theta + 1 = 0$, we get:

$$\begin{aligned}
 \lambda &= \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2} \\
 &= \cos\theta \pm \sqrt{\cos^2\theta - 1} \\
 &= \cos\theta \pm \sqrt{\sin^2\theta} \\
 &= \cos\theta \pm \sin\theta \quad (\text{since } \sin\theta > 0).
 \end{aligned}$$

If we try to solve for the eigenvectors we get:

$$\lambda = \cos\theta + \sin\theta \Rightarrow$$

$$\begin{aligned}
 A - \lambda I &= \begin{pmatrix} \cos\theta - (\cos\theta + \sin\theta) & -\sin\theta \\ \sin\theta & \cos\theta - (\cos\theta + \sin\theta) \end{pmatrix} \\
 &= \begin{pmatrix} -\sin\theta & \sin\theta \\ \sin\theta & \sin\theta \end{pmatrix}
 \end{aligned}$$

$$(A - \lambda I) \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} -\sin\theta & \sin\theta \\ \sin\theta & \sin\theta \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0$$

$$-a_1\sin\theta + a_2\sin\theta = 0$$

$$a_1\sin\theta + a_2\sin\theta = 0.$$

The only solutions to these equations is $a_1 = a_2 = 0$. So there aren't any eigenvectors associated with $\lambda = \cos\theta + \sin\theta$.

Similarly for $\lambda = \cos\theta - \sin\theta$ we get the same conclusion, i.e., there are no eigenvectors associated with $\lambda = \cos\theta - \sin\theta$.

So we see from this example, if T (and A) are normal that does not guarantee the existence of an orthonormal basis of eigenvectors.

However, the following theorem gives us several properties of normal operators.

Theorem: Let T be a normal operator on a real inner product space V . Then

- a. $\|T(v)\| = \|T^*(v)\|$ for all $v \in V$
- b. $T - \lambda I$ is normal for every $\lambda \in \mathbb{R}$
- c. If v is an eigenvector of T associated with λ then v is an eigenvector of T^* associated with λ .
- d. If λ_1 and λ_2 are distinct eigenvalues of T with corresponding eigenvectors v_1 and v_2 , then v_1 and v_2 are orthogonal.

Proof:

- a. For any $v \in V$ we have:

$$\begin{aligned}
 \|T(v)\|^2 &= \langle T(v), T(v) \rangle \\
 &= \langle T^*T(v), v \rangle \\
 &= \langle TT^*(v), v \rangle \quad (\text{since } TT^* = T^*T) \\
 &= \langle T^*(v), T^*(v) \rangle \\
 &= \|T^*(v)\|^2
 \end{aligned}$$

So $\|T(v)\| = \|T^*(v)\|$ for all $v \in V$.

b. We need to show $(T - \lambda I)(T - \lambda I)^* = (T - \lambda I)^*(T - \lambda I)$ for every $\lambda \in \mathbb{R}$:

$$\begin{aligned}
 (T - \lambda I)(T - \lambda I)^* &= (T - \lambda I)(T^* - \lambda I^*) \\
 &= (T - \lambda I)(T^* - \lambda I) \\
 &= TT^* - \lambda T^* - \lambda T + \lambda^2 I^2 \\
 &= T^*T - \lambda T^* - \lambda T + \lambda^2 I^2 \quad (\text{since } TT^* = T^*T) \\
 &= (T^* - \lambda I^*)(T - \lambda I) \\
 &= (T - \lambda I)^*(T - \lambda I).
 \end{aligned}$$

So $T - \lambda I$ is normal for every $\lambda \in \mathbb{R}$.

c. Suppose $T(v) = \lambda v$ for some $v \in V$ and let $S = T - \lambda I$.

S is normal by part b and

$$\begin{aligned}
 S(v) &= (T - \lambda I)(v) \\
 &= T(v) - \lambda I(v) \\
 &= \lambda v - \lambda v \\
 &= 0.
 \end{aligned}$$

$$\begin{aligned}
 \text{So } 0 &= \|S(v)\| = \|S^*(v)\| \quad (\text{by part a}) \\
 &= \|(T^* - \lambda I)(v)\| \\
 &= \|T^*(v) - \lambda v\|
 \end{aligned}$$

Hence $T^*(v) = \lambda v$, so v is an eigenvector of T^* associated with λ .

d. Let λ_1 and λ_2 be distinct eigenvalues of T corresponding to eigenvectors v_1 and v_2 .

$$\begin{aligned}
 \lambda_1 \langle v_1, v_2 \rangle &= \langle \lambda_1 v_1, v_2 \rangle \\
 &= \langle T(v_1), v_2 \rangle \\
 &= \langle v_1, T^*(v_2) \rangle \\
 &= \langle v_1, \lambda_2 v_2 \rangle \quad (\text{by part c}) \\
 &= \lambda_2 \langle v_1, v_2 \rangle.
 \end{aligned}$$

But $\lambda_1 \neq \lambda_2$, so $\langle v_1, v_2 \rangle = 0$, and v_1 and v_2 are perpendicular.

Def. Let T be a linear operator on a real inner product space V . We say T is **self-adjoint** if $T = T^*$. An $n \times n$ real matrix A is **self-adjoint** if $A = A^* = A^t$

So $n \times n$ real matrix A is **self-adjoint** if A is symmetric.

Lemma: Let T be a self-adjoint operator on a finite dimensional real inner product space V . Then:

- Every eigenvalue of T is real
- The characteristic polynomial of T splits over \mathbb{R} .

Proof:

a. Suppose λ is an eigenvalue of T with eigenvector v . Then we have:

$$\begin{aligned}
 \|T(v)\|^2 &= \langle T(v), T(v) \rangle \\
 &= \langle v, T^*T(v) \rangle \\
 &= \langle v, TT(v) \rangle \quad (\text{since } T \text{ is self-adjoint}) \\
 &= \langle vT(\lambda v) \rangle \\
 &= \langle v, \lambda^2 v \rangle \\
 &= \lambda^2 \langle v, v \rangle = \lambda^2 \|v\|^2
 \end{aligned}$$

Thus $\lambda^2 = \|T(v)\|^2/\|v\|^2$.

v is an eigenvector so nonzero and the right hand side is non-negative so λ is a real number.

b. Let β be an orthonormal basis for V . By the fundamental theorem of algebras, the characteristic polynomial for $[T]_\beta$ splits over the complex numbers into linear factors of the form $\lambda - \lambda_i$. But by part a, we know that all of the λ_i 's are real. So the characteristic polynomial of T splits over \mathbb{R} .

This lemma and Schur's theorem leads us to:

Theorem: Let T be a linear operator on a real finite dimensional inner product space V . Then T is self-adjoint if and only if there exists an orthonormal basis β of V consisting of eigenvectors of T .

Proof: Suppose T is self-adjoint. By the previous lemma, the characteristic polynomial of T splits.

Thus by Schur's theorem, there is an orthonormal basis β for V such that $[T]_\beta$ is upper triangular.

If we let $A = [T]_\beta$ then A is upper triangular.

However, we also have:

$$A^* = [T]_\beta^* = [T^*]_\beta = [T]_\beta = A.$$

So A and A^* are both upper triangular and thus A is diagonal.

That means that β must be made up of eigenvectors of T .

Ex. For the following linear operators, T , determine if T is normal, self-adjoint or neither. If possible, find an orthonormal basis of eigenvectors of T for V .

a. $V = \mathbb{R}^2$, $T(a, b) = ((2a - 2b), (-2a + 5b))$.

b. $V = \mathbb{R}^3$, $T(a_1, a_2, a_3) = (a_3, a_2, a_1)$.

a. With respect to the standard ordered basis β for \mathbb{R}^2 we have

$$A = [T]_\beta = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$

$$A^t = [T]^t_\beta = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$

$[T]_\beta$ is symmetric so T is self-adjoint and normal.

To find the eigenvalues we take:

$$\begin{aligned}\det(A - \lambda I) &= \det \begin{pmatrix} 2 - \lambda & -2 \\ -2 & 5 - \lambda \end{pmatrix} \\ &= (2 - \lambda)(5 - \lambda) - 4 \\ &= \lambda^2 - 7\lambda + 6.\end{aligned}$$

$$0 = \lambda^2 - 7\lambda + 6 = (\lambda - 1)(\lambda - 6) \implies \lambda = 1, 6; \text{ eigenvalues.}$$

To find the eigenvectors we find the null space of $A - \lambda I$.

$$\lambda_1 = 1: \quad A - \lambda I = A - I = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_1 - 2a_2 = 0$$

$$-2a_1 + 4a_2 = 0$$

$$\text{So, } a_1 = 2a_2: \quad v = \langle 2a_2, a_2 \rangle = a_2 \langle 2, 1 \rangle.$$

Thus all eigenvectors associated with $\lambda_1 = 1$ have the form $a_2 \langle 2, 1 \rangle$.

Hence an eigenvector of length one that spans this space is:

$$u_1 = \frac{1}{\sqrt{5}} \langle 2, 1 \rangle.$$

$$\lambda_2 = 6: \quad A - \lambda I = A - 6I = \begin{pmatrix} -4 & -2 \\ -2 & -1 \end{pmatrix}.$$

$$\begin{pmatrix} -4 & -2 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$-4a_1 - 2a_2 = 0$$

$$-2a_1 - a_2 = 0$$

So, $a_2 = -2a_1$: $v = \langle a_1, -2a_1 \rangle = a_1 \langle 1, -2 \rangle$.

Thus all eigenvectors associated with $\lambda_2 = 6$ have the form $a_1 \langle 1, -2 \rangle$.

Hence an eigenvector of length one that spans this space is:

$$u_2 = \frac{1}{\sqrt{5}} \langle 1, -2 \rangle.$$

By an earlier theorem we know that eigenvectors associated with different eigenvalues will always be perpendicular. Thus the set $\beta = \{u_1, u_2\} = \{\frac{1}{\sqrt{5}} \langle 2, 1 \rangle, \frac{1}{\sqrt{5}} \langle 1, -2 \rangle\}$, is an orthonormal basis for \mathbb{R}^2 .

b. With respect to the standard ordered basis for \mathbb{R}^3 we have

$$T(a_1, a_2, a_3) = (a_3, a_2, a_1)$$

$$A = [T]_{\beta} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^t = [T]^t_{\beta} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

A is symmetric so T is both self-adjoint and normal.

To find the eigenvalues we take:

$$\det(A - \lambda I) = \begin{pmatrix} -\lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{pmatrix}$$

$$= -(\lambda - 1)^2(\lambda + 1)$$

So the eigenvalues are $\lambda = -1, 1$.

Now let's find the eigenvectors:

$$\lambda_1 = -1: \quad A - \lambda I = A + I = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\text{So we solve: } \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$a_1 + a_3 = 0$$

$$2a_2 = 0$$

$$a_1 + a_3 = 0.$$

Thus the null space of $A + I$ is all vectors of the form $a_1 < 1, 0, -1 >$.

A unit vector that spans this space is given by: $\frac{1}{\sqrt{2}} < 1, 0, -1 >$.

$$\lambda_2 = \lambda_3 = 1: \quad A - \lambda I = A - I = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

To find the null space of $A - I$ we solve:

$$\begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$-a_1 + a_3 = 0$$

$$a_1 - a_3 = 0.$$

So $a_1 = a_3$ and a_2 is a free variable.

Thus all vectors in this null space are of the form:

$$< a_1, a_2, a_1 > = a_1 < 1, 0, 1 > + a_2 < 0, 1, 0 >.$$

So $\{ < 1, 0, 1 >, < 0, 1, 0 > \}$ span this null space. These vectors are already perpendicular so we just need to normalize them to get an orthonormal basis for this null space. Hence an orthonormal basis for \mathbb{R}^3 is given by:

$$u_1 = \frac{1}{\sqrt{2}} < 1, 0, -1 >$$

$$u_2 = \frac{1}{\sqrt{2}} < 1, 0, 1 >$$

$$u_3 = < 0, 1, 0 >$$