Normal and Self-Adjoint Operators

In the section called “Eigenvalues and Eigenvectors” we saw that for a finite
dimensional vector space V, a linear operator T: V' — V was diagonalizable if
and only if there exists an ordered basis § = {v, ... v, } for V of eigenvectors
of T. Thus it is natural to ask under what conditions does a finite dimensional

inner product space V over R have an orthonormal basis of eigenvectors?

To determine the conditions for V' to have an orthonormal basis of

eigenvectors of a linear operator T we start with the following lemma.

Lemma: LetT:V — V be alinear operator on a real finite dimensional inner

product space. If T has an eigenvector then so does T*.

Proof: Suppose v € I/ is an eigenvector of T corresponding to the eigenvalue

A.
Then foranyw € V we have:
0=<0,w>=<(T—-AH(), w>

=<v, (T—-A)"(w) >
=<v, (T"—2A)(w) >.

So v is perpendicular to the null space of T* — Al.

SoT* — Al is not onto and hence not 1-1.

Hence T* — Al has a nonzero null space.

Notice that any nonzero vector in the null space of T* — Al is an eigenvector

of T™ corresponding to A.



A proof of the following theorem can be done by induction on the dimension of

V.

Theorem (Schur’s Theorem): Let T:V — V be a linear operator on a real finite
dimensional inner product space I/. Suppose that the characteristic
polynomial of T splits (i.e., det(4A = AI) = c(A — aq) - (A — a,), where

A = [T]). Then there exists an orthonormal basis 8 of V such that [T] z is

upper triangular.

Our goalis to find an orthonormal basis S for the real inner product space V

so that for the linear operator T:V — I/, [T]ﬁ is diagonal. Notice that if
there is an orthonormal basis § such that [T] 5 is diagonal, then since

[T*]p = [T]*ﬁ , (from a theorem in the previous section), [T "] is also

diagonal. In addition, since diagonal matrices commute, T and T* commute,
i.e. TT* =T"T.

Def. LetVV be arealinner product spaceand T:V — V alinear operator. We

say T isnormal TT* = T*T. Annxn real matrix A is called normal if

AA* = A*A.

Recall that a real matrix 4 is called symmetric if A = A® = A*. Areal matrix

A is called skew symmetricif A = —Af = —A*.



Ex. Show that if a real matrix A is skew symmetric then A4 is normal.

Since A = —A*wehave: AA* = —A?, and A*A = —A?% so

AA* = A*A, and A is normal.

Ex. LetT: R? - R? be arotationby 8, 0 < 8 < m. If B is the standard
(cos@ —sin6

] ) Show that A is normal.
sin@ cosf

ordered basisthen [T]g = A =

Notice that:
g = (058 i) (<ot sindy (1 0)
14= (5 cos0) oo cos) = (o 1)

So AA®" = A*A = I, hence A is normal.

cosf@ —sinf

Notice that( ]
sin@ cos6

) ; 0 < 0 < m, hasno eigenvectors since:

cosf — 1 —sinf )
sinf cosf — A

= (cosf — 1)? +sin? 6
A% — 2Acos6 + 1.

det(A — AI) = det (



Using the quadratic formula to solve 1> — 2Acosf + 1 = 0, we get:

__ 2cosB@+tvV4cos? 6-4

4 2
= cos® +Vcos2 6 — 1
= cos@ + VsinZ 6
= cos6 =+ sinf (since sinf > 0).

If we try to solve for the eigenvectors we get:
A = cosf + sinf =

cosf — (cos6 + sin0) —sinf

A=Al= ( sinf cosO — (cos6 + SinH))

_ (—sin@ sinH)

sin@  sinf

@=10(e;) = (g oine) (a3) =0

—a4sinf + a,sinf =0

a,sinf + a,sinf = 0.

The only solutions to these equationsis a; = a, = 0. So there aren’t any

eigenvectors associated with A = cosf + sin6.



Similarly for A = cosfO — sinf we get the same conclusion, i.e., there are

no eigenvectors associated with A = cos@ — sinf.

So we see from this example, if T (and A) are normal that does not guarantee
the existence of an orthonormal basis of eigenvectors.

However, the following theorem gives us several properties of normal
operators.

Theorem: Let T be a normal operator on a real inner product space V. Then

o))

NT@)|| = IT*(v)]| forallv € V

b. T — Al isnormalforeveryA € R

c. Ifvis an eigenvector of T associated with A then v is an eigenvector of
T™ associated with A.

d. If A; and A, are distinct eigenvalues of T with corresponding

eigenvectors v, and vV,, then v, and v, are orthogonal.

Proof:

a. Foranyv € V we have:
ITWII? =<T@®), T(v) >
=<T'T(v),v>
=<TT*(v),v> (since TT* =T*T)
=<T"(v), T*(v) >
= IT*W)I?

So [T = IIT*(W)|| forallv € V.
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b. We needtoshow (T — AI)(T — AI)* = (T — AI)*(T — Al) for every

1ER:

(T — AD(T — AD)* = (T — AD(T* — AI)
= (T —AD(T* = A
=TT* — AT* — AT + 1?I?

=T*T — AT* — AT + A%I? (since TT* = T*T)

= (T* = AI")(T — AI)
= (T — AD*(T — AD).

SoT — Al is normalforevery A € R.

c. Suppose T(v) = Avforsomev € V andletS =T — Al.
S is normal by part b and
Sw) = (T - )W)
=T(w) — Al (v)
=Alv—Av
= 0.

so  0=[SWI =S ( by part a)
= I[(T* = AD W)l
= IT*(v) — Av||

Hence T*(v) = Av, sovis an eigenvector of T associated with A.



d. Let A, and 4, be distinct eigenvalues of T corresponding to
eigenvectors v; and v,.

M <vq,vy >=< A vy, V0, >
=< T(vy),v, >
=< v, T*(vy) >
=< v, v, > (by part c)

=Az <v1,v2 >

But A4 # 4,,s0 < vq,v, >= 0, and v; and v, are perpendicular.

Def. Let T be a linear operator on a real inner product space V. We say T is
self-adjointif T = T*. An nxn real matrix 4 is self-adjointif A = A* = A

So nxn real matrix A is self-adjoint if 4 is symmetric.

Lemma: Let T be a self-adjoint operator on a finite dimensional real inner

product space V. Then:

a. Every eigenvalue of T is real

b. The characteristic polynomial of T splits over R.



Proof:
a. Suppose A is an eigenvalue of T with eigenvector v. Then we have:
ITWII? =<T®), T(w) >
=<v,T'T(v) >
=<v,TT(v) > (since T is self-adjoint)
=< vT(4v) >
=< v, 1%V >

=22 <v,v>=21?|v|?

Thus A% = [IT@)[I*/1Iv]I*.

U is an eigenvector so nonzero and the right hand side is hon-negative

so A isareal number.

b. Let 8 be an orthonormal basis for I/. By the fundamental theorem of
algebras, the characteristic polynomial for [T]B splits over the complex
numbers into linear factors of the form A — A;. But by part a, we know that

all of the A;’s are real. So the characteristic polynomial of T splits over R.



This lemma and Schur’s theorem leads us to:

Theorem: Let T be a linear operator on a real finite dimensional inner product
space V. Then T is self-adjoint if and only if there exists an orthonormal basis

P of V consisting of eigenvectors of T

Proof: Suppose T is self-adjoint. By the previous lemma, the characteristic

polynomial of T splits.

Thus by Schur’s theorem, there is an orthonormal basis 8 for VV such that

[T]p is upper triangular.
Ifwe let A = [T]z then A is upper triangular.
However, we also have:
A" =Tl =[T"]p = [Tlpg = A.
So A and A* are both upper triangular and thus A is diagonal.

That means that 8 must be made up of eigenvectors of T'.

Ex. Forthe following linear operators, T, determine if T is normal, self-adjoint

or neither. If possible, find an orthonormal basis of eigenvectors of T for V.

a. V=R, T(a,b) = ((2a — 2b), (—2a + 5b).
b.V = Rg, T(al, a,, a3) = (a3, az,al).

a. With respect to the standard ordered basis [§ for R? we have

A:[T]B:(z —52)

—2
AF =T = (_22 _52)

[T]p is symmetric so T is self-adjoint and normal.
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To find the eigenvalues we take:

det(d — AD) = alet(2 -4 =2 )

—2 5-2
=Q2-DG-1) -4
12 —71+6.

0=22-72+6=LA-1)A1—-6) = A1=1,6; eigenvalues.

To find the eigenvectors we find the null space of A — Al.

(_12 _42) (Z;) - (8)

—2a4 +4a, =0
So, aq =2a,: v=<2a,,a,>=a,<21>.

Thus all eigenvectors associated with A; = 1 have theforma, < 2,1 >.

Hence an eigenvector of length one that spans this space is:

1

\/§<2,1>.

u1=



6: A—-AI=A—61==("4 _ﬁ

-2 =1/

(& 2D(@) =)
—4a, — 2a, =0
—2a, —a, =0

So, a, = —2a4: v=<aq,—2a0;>=a01<1,-2>.

Thus all eigenvectors associated with A, = 6 have the form
al < 1, _2 >.

Hence an eigenvector of length one that spans this space is:

L<1,-2>.

u2=\/§

By an earlier theorem we know that eigenvectors associated with
different eigenvalues will always be perpendicular. Thus the set

B ={u,u,} = {\/ig <21>, Tlg < 1,—2 >}, is an orthonormal

basis for R2.
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b. With respect to the standard ordered basis for R3 we have

T(ay, ay,a3) = (as,a, a;)

0 0 1
A=[T]ﬁ=(o 1 0)

1 0 O

0 0 1
Al = [T]tﬁ = (O 1 O).

1 0 O

A is symmetric so T is both self-adjoint and normal.

To find the eigenvalues we take:

-1 0 1
det(A—AI)=<0 1-2 0)
1 0 -2

=—A-1D2*A+1
So the eigenvaluesare A = —1, 1.

Now let’s find the eigenvectors:

1 0 1
A =—1: A—/11=A+I=<0 2 o)

1 0 1
1 0 1\ /% 0
So we solve: 0O 2 0 (az =(0
1 0 1/ \as 0
a1+a3:0
2a2:O

a1+a3:0.
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Thus the null space of A + [ is all vectors of the forma; < 1,0, —1 >.

A unit vector that spans this space is given by: % <10, -1 >.
-1 0 1
1 0 -1

To find the null space of A — I we solve:

-1 0 1 ay 0
1 0 -1/ \as 0

—a;+az =0

al—a3=0.

Soa,; = az anda, is afreevariable.

Thus all vectors in this null space are of the form:

<ay,apa >=a, <1,0,1> +a, <0,1,0 >.

So{< 1,0,1 >,< 0,1,0 >} span this null space. These vectors are already
perpendicular so we just need to normalize them to get an orthonormal basis

for this null space. Hence an orthonormal basis for R3 is given by:

1

W ==<10,-1>
uf;%<1&1>

u; =< 0,1,0 >



