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                                  Normal and Self-Adjoint Operators 

 

     In the section called  “Eigenvalues and Eigenvectors” we saw that for a finite 

dimensional vector space 𝑉, a linear operator 𝑇: 𝑉 → 𝑉 was diagonalizable if 

and only if there exists an ordered basis 𝛽 = {𝑣1, … 𝑣𝑛} for 𝑉 of eigenvectors 

of 𝑇.  Thus it is natural to ask under what conditions does a finite dimensional 

inner product space 𝑉 over ℝ have an orthonormal basis of eigenvectors? 

     To determine the conditions for 𝑉 to have an orthonormal basis of 

eigenvectors of a linear operator 𝑇  we start with the following lemma. 

 

Lemma:  Let 𝑇: 𝑉 → 𝑉 be a linear operator on a real finite dimensional inner 

product space.  If 𝑇 has an eigenvector then so does 𝑇∗. 

 

Proof:  Suppose 𝑣 ∈ 𝑉 is an eigenvector of 𝑇 corresponding to the eigenvalue 

𝜆. 

               Then for any 𝑤 ∈ 𝑉 we have: 

                             0 =< 0, 𝑤 >=< (𝑇 − 𝜆𝐼)(𝑣), 𝑤 > 

                                                      =< 𝑣, (𝑇 − 𝜆𝐼)∗(𝑤) > 

                                                      =< 𝑣, (𝑇∗ − 𝜆𝐼)(𝑤) >. 

So 𝑣 is perpendicular to the null space of 𝑇∗ − 𝜆𝐼. 

So 𝑇∗ − 𝜆𝐼 is not onto and hence not 1-1. 

Hence 𝑇∗ − 𝜆𝐼 has a nonzero null space. 

Notice that any nonzero vector in the null space of 𝑇∗ − 𝜆𝐼 is an eigenvector 

of 𝑇∗ corresponding to 𝜆. 
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A proof of the following theorem can be done by induction on the dimension of 

𝑉. 

 

Theorem (Schur’s Theorem):  Let 𝑇: 𝑉 → 𝑉 be a linear operator on a real finite 

dimensional inner product space 𝑉.  Suppose that the characteristic 

polynomial of 𝑇 splits (i.e., det(𝐴 = 𝜆𝐼) = 𝑐(𝜆 − 𝑎1) ⋯ (𝜆 − 𝑎𝑛), where      

𝐴 = [𝑇]).  Then there exists an orthonormal basis 𝛽 of 𝑉 such that [𝑇]𝛽  is 

upper triangular. 

 

     Our goal is to find an orthonormal basis 𝛽 for the real inner product space 𝑉 

so  that for the linear operator 𝑇: 𝑉 → 𝑉,  [𝑇]𝛽   is diagonal.  Notice that if 

there is an orthonormal basis 𝛽 such that [𝑇]𝛽  is diagonal, then since                 

[𝑇∗]𝛽 = [𝑇]∗
𝛽  , (from a theorem in the previous section), [𝑇∗]𝛽  is also 

diagonal.  In addition, since diagonal matrices commute,  𝑇 and 𝑇∗ commute,      

i.e. 𝑇𝑇∗ = 𝑇∗𝑇. 

 

Def.  Let 𝑉 be a real inner product space and 𝑇: 𝑉 → 𝑉  a linear operator.  We 

say 𝑇 is normal  𝑇𝑇∗ = 𝑇∗𝑇.  An 𝑛x𝑛 real matrix 𝐴 is called normal if            

𝐴𝐴∗ = 𝐴∗𝐴. 

 

Recall that a real matrix 𝐴 is called symmetric if 𝐴 = 𝐴𝑡 = 𝐴∗.  A real matrix 

𝐴 is called skew symmetric if 𝐴 = −𝐴𝑡 = −𝐴∗.   
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Ex.  Show that if a real matrix 𝐴 is skew symmetric then 𝐴 is normal. 

 

             Since  𝐴 = −𝐴∗ we have:      𝐴𝐴∗ = −𝐴2,    and   𝐴∗𝐴 = −𝐴2 so 

            𝐴𝐴∗ = 𝐴∗𝐴,  and 𝐴 is normal. 

 

Ex.  Let 𝑇: ℝ2 → ℝ2 be a rotation by 𝜃, 0 < 𝜃 < 𝜋.   If 𝛽 is the standard 

ordered basis then     [𝑇]𝛽 = 𝐴 = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

).  Show that 𝐴 is normal. 

 

Notice that: 

                     𝐴𝐴∗ = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
) = (

1 0
0 1

)   

                  𝐴∗𝐴 = (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
) (

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) = (
1 0
0 1

). 

So   𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼, hence 𝐴 is normal. 

 

 

Notice that (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) ;    0 < 𝜃 < 𝜋,  has no eigenvectors since: 

 

                        det(𝐴 − 𝜆𝐼) = det (
𝑐𝑜𝑠𝜃 − 𝜆 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 − 𝜆
) 

                                               = ( 𝑐𝑜𝑠𝜃 − 𝜆)2 + sin2 𝜃 

                                               =  𝜆2 − 2𝜆𝑐𝑜𝑠𝜃 + 1. 
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Using the quadratic formula to solve 𝜆2 − 2𝜆𝑐𝑜𝑠𝜃 + 1 = 0, we get: 

                                                 𝜆 =
2𝑐𝑜𝑠𝜃±√4 cos2 𝜃−4

2
 

                                          = 𝑐𝑜𝑠𝜃 ± √cos2 𝜃 − 1 

                                               = 𝑐𝑜𝑠𝜃 ± √sin2 𝜃 

                                               = 𝑐𝑜𝑠𝜃 ± 𝑠𝑖𝑛𝜃              (since 𝑠𝑖𝑛𝜃 > 0). 

 

If we try to solve for the eigenvectors we get: 

𝜆 = 𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃  ⟹ 

          𝐴 − 𝜆𝐼 =  (
𝑐𝑜𝑠𝜃 − (𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃) −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 − (𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃)
) 

                        = (
−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃

) 

 

               (𝐴 − 𝜆𝐼) (
𝑎1

𝑎2
) = (

−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃

) (
𝑎1

𝑎2
) = 0  

 

                                                 −𝑎1𝑠𝑖𝑛𝜃 + 𝑎2𝑠𝑖𝑛𝜃 = 0 

                                                     𝑎1𝑠𝑖𝑛𝜃 + 𝑎2𝑠𝑖𝑛𝜃 = 0. 

 

The only solutions to these equations is  𝑎1 = 𝑎2 = 0. So there aren’t any 

eigenvectors associated with 𝜆 = 𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃. 
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Similarly for   𝜆 = 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃  we get the same conclusion, i.e., there are 

no eigenvectors associated with   𝜆 = 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃. 

 

So we see from this example, if 𝑇 (and 𝐴) are normal that does not guarantee 
the existence of an orthonormal basis of eigenvectors.  

 

However, the following theorem gives us several properties of normal 
operators. 

Theorem: Let 𝑇 be a normal operator on a real inner product space 𝑉.  Then 

a. ‖𝑇(𝑣)‖ = ‖𝑇∗(𝑣)‖ for all 𝑣 ∈ 𝑉 

b. 𝑇 − 𝜆𝐼 is normal for every 𝜆 ∈ ℝ 

c. If 𝑣 is an eigenvector of 𝑇 associated with 𝜆 then 𝑣 is an eigenvector of 

𝑇∗ associated with 𝜆. 

d. If 𝜆1 and 𝜆2 are distinct eigenvalues of 𝑇 with corresponding 

eigenvectors 𝑣1 and 𝑣2, then 𝑣1 and 𝑣2 are orthogonal. 

 

Proof:   

a.  For any 𝑣 ∈ 𝑉 we have: 

                               ‖𝑇(𝑣)‖2 =< 𝑇(𝑣), 𝑇(𝑣) > 
                                                 =< 𝑇∗𝑇(𝑣), 𝑣 > 
                                                 =< 𝑇𝑇∗(𝑣), 𝑣 >      (since  𝑇𝑇∗ = 𝑇∗𝑇) 
                                                  =< 𝑇∗(𝑣), 𝑇∗(𝑣) > 
                                                  = ‖𝑇∗(𝑣)‖2 

So ‖𝑇(𝑣)‖ = ‖𝑇∗(𝑣)‖ for all 𝑣 ∈ 𝑉. 
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b. We need to show   (𝑇 − 𝜆𝐼)(𝑇 − 𝜆𝐼)∗ = (𝑇 − 𝜆𝐼)∗(𝑇 − 𝜆𝐼) for every 

𝜆 ∈ ℝ:    
 

(𝑇 − 𝜆𝐼)(𝑇 − 𝜆𝐼)∗ = (𝑇 − 𝜆𝐼)(𝑇∗ − 𝜆𝐼∗)   
                                                   = (𝑇 − 𝜆𝐼)(𝑇∗ − 𝜆𝐼)             
                                                    = 𝑇𝑇∗ − 𝜆𝑇∗ − 𝜆𝑇 + 𝜆2𝐼2 
                                       = 𝑇∗𝑇 − 𝜆𝑇∗ − 𝜆𝑇 + 𝜆2𝐼2   (since 𝑇𝑇∗ = 𝑇∗𝑇) 
                                        = (𝑇∗ − 𝜆𝐼∗)(𝑇 − 𝜆𝐼) 
                                         = (𝑇 − 𝜆𝐼)∗(𝑇 − 𝜆𝐼). 

So 𝑇 − 𝜆𝐼 is normal for every 𝜆 ∈ ℝ. 

 

 

c. Suppose 𝑇(𝑣) = 𝜆𝑣 for some 𝑣 ∈ 𝑉 and let 𝑆 = 𝑇 − 𝜆𝐼.  
𝑆 is normal by part b and 

                            𝑆(𝑣) = (𝑇 − 𝜆𝐼)(𝑣) 
                                       = 𝑇(𝑣) − 𝜆𝐼(𝑣) 
                                       = 𝜆𝑣 − 𝜆𝑣 
                                        = 0. 
 
     So            0 = ‖𝑆(𝑣)‖ = ‖𝑆∗(𝑣)‖           ( by part a) 

                                                    = ‖(𝑇∗ − 𝜆𝐼)(𝑣)‖ 
                                             = ‖𝑇∗(𝑣) − 𝜆𝑣‖ 
 

Hence     𝑇∗(𝑣) = 𝜆𝑣, so 𝑣 is an eigenvector of 𝑇∗ associated with 𝜆.   
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d. Let  𝜆1 and 𝜆2 be distinct eigenvalues of 𝑇  corresponding to 
eigenvectors 𝑣1 and 𝑣2.                

                                𝜆1 < 𝑣1, 𝑣2 >=< 𝜆1𝑣1, 𝑣2 >       

                                                            =< 𝑇(𝑣1), 𝑣2 > 

                                                             =< 𝑣1, 𝑇∗(𝑣2) >          

                                                             =< 𝑣1, 𝜆2𝑣2 >            (by part c) 

                                                             = 𝜆2 < 𝑣1, 𝑣2 > . 

   

But   𝜆1 ≠ 𝜆2 , so  < 𝑣1, 𝑣2 >= 0, and 𝑣1 and 𝑣2 are perpendicular.     

 

 

Def.  Let 𝑇 be a linear operator on a real inner product space 𝑉.  We say 𝑇 is 

self-adjoint if 𝑇 = 𝑇∗. An 𝑛x𝑛 real matrix 𝐴 is self-adjoint if 𝐴 = 𝐴∗ = 𝐴𝑡  

So 𝑛x𝑛 real matrix 𝐴 is self-adjoint if 𝐴 is symmetric. 

 

 

Lemma: Let 𝑇 be a self-adjoint operator on a finite dimensional real inner 

product space 𝑉.  Then: 

a. Every eigenvalue of 𝑇 is real 

b. The characteristic polynomial of 𝑇 splits over ℝ. 

 

 

 



8 
 

Proof:  

a.  Suppose 𝜆 is an eigenvalue of 𝑇 with eigenvector 𝑣.  Then we have: 

                            ‖𝑇(𝑣)‖2 =< 𝑇(𝑣), 𝑇(𝑣) > 

                                           =< 𝑣, 𝑇∗𝑇(𝑣) > 

                                                  =< 𝑣, 𝑇𝑇(𝑣) >            (since 𝑇 is self-adjoint) 

                                            =< 𝑣𝑇(𝜆𝑣) > 

                                            =< 𝑣, 𝜆2𝑣 > 

                                            = 𝜆2 < 𝑣, 𝑣 >= 𝜆2‖𝑣‖2 

 

            Thus 𝜆2 = ‖𝑇(𝑣)‖2/‖𝑣‖2. 

 

                 𝑣 is an eigenvector so nonzero and the right hand side is non-negative    

                  so  𝜆  is a real number. 

 

  

b. Let 𝛽 be an orthonormal basis for 𝑉.  By the fundamental theorem of 

algebras, the characteristic polynomial for [𝑇]𝛽  splits over the complex 

numbers into linear factors of the form 𝜆 − 𝜆𝑖.  But by part a, we know that 

all of the 𝜆𝑖’s are real.  So the characteristic polynomial of 𝑇 splits over ℝ. 
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This lemma and Schur’s theorem leads us to: 

Theorem: Let 𝑇 be a linear operator on a real finite dimensional inner product 

space 𝑉.  Then 𝑇 is self-adjoint if and only if there exists an orthonormal basis 

𝛽 of 𝑉 consisting of eigenvectors of 𝑇. 

 

Proof: Suppose 𝑇 is self-adjoint.  By the previous lemma, the characteristic 

polynomial of 𝑇 splits.   

Thus by Schur’s theorem, there is an orthonormal basis 𝛽 for 𝑉 such that 
[𝑇]𝛽  is upper triangular. 

If we let  𝐴 = [𝑇]𝛽  then 𝐴 is upper triangular. 

However, we also have: 

                 𝐴∗ = [𝑇]𝛽
∗ = [𝑇∗]𝛽 = [𝑇]𝛽 = 𝐴. 

So 𝐴 and 𝐴∗ are both upper triangular and thus 𝐴 is diagonal. 

That means that 𝛽 must be made up of eigenvectors of 𝑇. 

 

Ex.  For the following linear operators, 𝑇, determine if 𝑇 is normal, self-adjoint 

or neither.  If possible, find an orthonormal basis of eigenvectors of 𝑇 for 𝑉. 

a. 𝑉 = ℝ2,  𝑇(𝑎, 𝑏) = ((2𝑎 − 2𝑏), (−2𝑎 + 5𝑏). 

b. 𝑉 = ℝ3,  𝑇(𝑎1, 𝑎2, 𝑎3) = (𝑎3, 𝑎2, 𝑎1). 
 

a. With respect to the standard ordered basis 𝛽 for  ℝ2 we have 

               𝐴 = [𝑇]𝛽 = (
2 −2

−2 5
) 

            𝐴𝑡 = [𝑇]𝑡
𝛽 = (

2 −2
−2 5

) 

[𝑇]𝛽  is symmetric so 𝑇 is self-adjoint and normal. 
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To find the eigenvalues we take: 

         det(𝐴 −  𝜆𝐼) = 𝑑𝑒𝑡 (2 − 𝜆 −2
−2 5 − 𝜆

) 

                                = (2 − 𝜆)(5 − 𝜆) − 4     

                                     = 𝜆
2

− 7𝜆 + 6. 
 

0 = 𝜆2 − 7𝜆 + 6 = (𝜆 − 1)(𝜆 − 6)      ⟹   𝜆 = 1, 6;  eigenvalues. 
 

To find the eigenvectors we find the null space of 𝐴 − 𝜆𝐼. 
 
 

        𝜆1 = 1:          𝐴 − 𝜆𝐼 = 𝐴 − 𝐼 = (
1 −2

−2 4
). 

 

                              ( 1 −2
−2 4

) (
𝑎1

𝑎2
) = (

0
0

) 

                                               𝑎1 − 2𝑎2 = 0 

                                          −2𝑎1 + 4𝑎2 = 0 

 

        So,     𝑎1 = 2𝑎2:     𝑣 =< 2𝑎2, 𝑎2 >= 𝑎2 < 2,1 >. 

 

        Thus all eigenvectors associated with 𝜆1 = 1 have the form 𝑎2 < 2,1 >. 

        Hence an eigenvector of length one that spans this space is: 

                                        𝑢1 =
1

√5
< 2,1 > . 
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𝜆2 = 6:            𝐴 − 𝜆𝐼 = 𝐴 − 6𝐼 = (
−4 −2
−2 −1

).  

 

                  (−4 −2
−2 −1

) (
𝑎1

𝑎2
) = (

0
0

) 

                        −4𝑎1 − 2𝑎2 = 0 
                            −2𝑎1 − 𝑎2 = 0 
 
So,  𝑎2 = −2𝑎1:     𝑣 =< 𝑎1, −2𝑎1 >= 𝑎1 < 1, −2 >. 
 
Thus all eigenvectors associated with 𝜆2 = 6 have the form                

𝑎1 < 1, −2 >. 
 
Hence an eigenvector of length one that spans this space is: 

                                        𝑢2 =
1

√5
< 1, −2 >. 

 
 
By an earlier theorem we know that eigenvectors associated with 
different eigenvalues will always be perpendicular.  Thus the set 

𝛽 = {𝑢1, 𝑢2} = {
1

√5
< 2,1 > ,   1

√5
< 1, −2 >}, is an orthonormal 

basis for ℝ2. 
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b. With respect to the standard ordered basis for ℝ3 we have 

                   𝑇(𝑎1, 𝑎2, 𝑎3) = (𝑎3, 𝑎2, 𝑎1) 
 

                                        𝐴 = [𝑇]𝛽 = (
0 0 1
0 1 0
1 0 0

) 

 

                                     𝐴𝑡 = [𝑇]𝑡
𝛽 = (

0 0 1
0 1 0
1 0 0

). 

𝐴 is symmetric so 𝑇 is both self-adjoint and normal. 
 

To find the eigenvalues we take: 

               det(𝐴 −  𝜆𝐼) = (
−𝜆 0 1
0 1 − 𝜆 0
1 0 −𝜆

) 

                                    
                                     = −(𝜆 − 1)2(𝜆 + 1) 
 
So the eigenvalues are 𝜆 = −1, 1. 
 
Now let’s find the eigenvectors: 

𝜆1 = −1:       𝐴 − 𝜆𝐼 = 𝐴 + 𝐼 = (
1 0 1
0 2 0
1 0 1

) 

 

So we solve:      (
1 0 1
0 2 0
1 0 1

) (

𝑎1

𝑎2

𝑎3

) = (
0
0
0

) 

 
                                  𝑎1 + 𝑎3 = 0 
                                          2𝑎2 = 0 
                                   𝑎1 + 𝑎3 = 0. 
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Thus the null space of 𝐴 + 𝐼 is all vectors of the form 𝑎1 < 1,0, −1 >. 

A unit vector that spans this space is given by:   
1

√2
< 1,0, −1 >. 

 

 

𝜆2 = 𝜆3 = 1:       𝐴 − 𝜆𝐼 = 𝐴 − 𝐼 = (
−1 0 1
0 0 0
1 0 −1

) 

 
To find the null space of 𝐴 − 𝐼 we solve: 
                              

(
−1 0 1
0 0 0
1 0 −1

) (

𝑎1

𝑎2 
𝑎3

) = (
0
0
0

) 

                                                               −𝑎1 + 𝑎3 = 0 

                                                                   𝑎1 − 𝑎3 = 0. 

So 𝑎1 = 𝑎3 and 𝑎2 is a free variable. 

Thus all vectors in this null space are of the form: 

                          < 𝑎1, 𝑎2, 𝑎1 >= 𝑎1 < 1,0,1 > +𝑎2 < 0,1,0 >. 

 

So {< 1,0,1 >, < 0,1,0 >} span this null space.  These vectors are already 
perpendicular so we just need to normalize them to get an orthonormal basis 

for this null space. Hence an orthonormal basis for ℝ3  is given by: 

                             𝑢1 =
1

√2 
< 1,0, −1 > 

                             𝑢2 =
1

√2 
< 1,0,1 > 

                             𝑢3 =< 0, 1,0 >                                      


