The Adjoint of a Linear Operator

Let I/ be an inner product space and T a linear operatoron V (i.e., T is a linear

transformation from V into V).

Def. The Adjoint of T, written T, is a linear operator on IV whose matrix
representation with respect to an orthonormal basis [ of V' is

[T]*[), = A", where A" is the transpose of A = [T] 5. (Note: if V was a vector

space over the complex numbers then A* would be the conjugate transpose

of A. However, we will only be considering vector spaces over the real
numbers).

Theorem: Let V be a finite dimensional inner product space over R and
F:V — IR, alinear transformation. Then there exists a unique y € I/ such
that F(v) =< v,y >forallv € V.,

Proof: Let § = {vy, ..., 1,,} be an orthonormal basis for V and
y =Yis  Fw)v,

Define a linear transformation h: V - R by h(v) =< v,y >,for1 <i <n.

Then we have:
h(vj) =< v}, N  Fw)v; >= YL F(vy) < v, v >

= F(vj) (since {v4, ..., v, } is orthonormal).



Since F and h are both linear transformations and they are equal on the basis

B, they must be equalon allof I/.

To see that y is unique, suppose there is a y’ such that
F(v) =<wv,y’' > forallv eV.
Then< v,y >=< v.y' >forallv € V.

But by an earlier theoremy = y’, so y is unique.

Ex. Let F: R? > R by F(vy,v,) = 4v; — v,. Find the unique vector
y € R% suchthat F(vy,v,) =< v,y >where v = (V1, V5).

Let f = {e,, e,} be the standard ordered orthonormal basis for R?.
y = (F(en))er + (F(ez))e,
== 4‘61 - 182 == (4’, _1)

Then: F(Ul, vz) =< (vl, vz), (4, _1) >= 4171 — V5.

Theorem: Let I/ be a finite dimensional inner product space over R

And T alinear operator on /. Then there exists a unique function
T*:V - Vsuchthat< T(v),w >=< v, T*(w) >forallv,w € V.

Furthermore, T* is linear.



Proof: Letw € V anddefineG:V = R byG(v) =<T(v), w >,forveV.
First notice that G is linear since forany v{,v, € V andc € R:
G(cvy +vy) =<T(cvy +v,),w >

=< cT(vy) + T(v,),w > becauseT is linear
=c<Twy)w>+<T(w,y),w>
=cG(vy) + G(vy).

By the previous theorem there is a unique w’ € V such that:
G(v) =<v,w >.

Thus we have forallv € V:

Gw) =<TWw),w >=<v,w >.

So we can define: T V->Voby T*(WwW)=w.

Thus we have: <TWw),w>=<vT"(w) >.

Let’s show that T ¥is linear.

Letwy,w, €V and ¢ € R, thenforany v € IV we have:

<v, T*(cwy +w,) >=<TW), cwy +w, >

=c<TWw),w>+<TW),w, >

=c<v,T" (W) >+<v,T"(W,) >

=<7, CT*(Wl) + T*(Wz) >,



Since thisis true forany v € V, we have:

T*(CW1 + Wz) = CT*(Wl) + T*(Wz)

Thus T is linear.

Now let’s show that T* is unique.
Suppose S:V = Vislinearandforallv,w € V

<TW),w>=<vSWw) >.

Since< T(v),w >=< v, T*(w) >forall v,w € V, we have
<v,T"(w) >=<1v,5(w) >.
Thus T*(w) = S(w) forallw € V.

HenceT* = S, and T™ is unique.

The next theorem tells us that we can calculate a matrix representation of T,

called that adjoint of T, by taking the transpose of a matrix representation of

T.

Theorem: Let V be a finite dimensional inner product space over R and 8 an

orthonormal basisfor V. If T: V — V is a linear operator on I/ then



Proof: LetA = [T]g, B = [T"]g, where B = {vy, ...,v,} is an orthonormal

basis for V.

B;j =< T*(vj),vl- >=< vi,T*(vj) >
=<T(v;),v; >
= Aj;
= (A7)

SoB = A", where A" is the transpose of the matrix A.

Ex. Let T be a linear operator on R3 given by
T(ay,az,a3) = ((3ay — az), (a; + 2a;), (a1 + a; + as))

With respect to 3, the standard ordered basis on R3. Find the matrix

representation of T ™ with respect to this basis.

We start by finding a matrix representation of T with respectto 5.

3 0 -1
Hh=<12 o).
11 1

So T is the transpose of this matrix:

3 1 1
[Wh=<0 2 Q.
-1 0 1



Ex. Show that in the previous example < T(v) ,w >=< v, T*(w) >, for
allv,w € R3.

Letv =< a,ap,as >, W =< bl,bz,bg >,

30 -1\ /@& 3a, — as
-2 () )
1 1 1 as a1+a2+a3

< T(U),W >=< ((3611 - a3), (al + Zaz), (al + az + ag)), (bll bz, b3) >

= (3a1 - a3)b1 + (a1 + Zaz)bz + (a1 + az + a3)b3.

3 1 1\ /b 3b, + by + bs
—1 0 1/ \bs —b; + b,

< v, T*(W) >=< (al, a,, a3), ((3b1 + b2 + b3), (2b2 + b3), (_bl + bz)) >
= a1(3b1 + bz + b3) + a, (sz + b3) + a3(_b1 + bz)
= (3a1 - a3)b1 + (al + Zaz)bz + (al + a, + ag)bg

=<T),w >.



Theorem: Let V be arealinner product space and S and T linear operators on
V. Then

a. (S+T)y =8S"+T"
b (cT)* =cT*, c€eR
c. (TS =S'T

d T =T

e I*=1.

Below are the proofs of a and c.
a. Forv,w € IV we have;
<, S+T)YWwW)>=<ES+T)w),w >
=< (S(v) + T(v)),w >
=<S(v),w>+<TWw),w >
=<v,5Ww)>+<v,T"(w) >
Forallv,w € V so
S+T)y =S"+T".
c. Forallv,w € V we have:
<v, ST*(w) >=<S(), T*(w) >
=< (TS)(v),w >
=<v, (TS)*(w) >

So (TS)* = S*T*.



Corollary: Let A and B be nxn matrices. Then:

a.(A+B)*=A"+B"

b. (cA)" =cA*, foranyc € R
c. (AB)* = B*A®

d. A" =A

e. I*=1.

Ex. Let V be a finite dimensional real inner product space. Prove thatif T is
invertible then T* is invertible and (T*) ™1 = (T~1)*.

Since T is invertible, it has aninverse, T ™1, and TT 1 = I.

We can then say that (TT ~1)* = I*.

By part e of the last theorem [* = [, and by partc, (TT™1)* = (T~1)*T*.
Thus we have:  (T~1)*T* = I.

That means that T* has an inverse given by (T ~1)*.

Thatis, (T*)"! = (T~



