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                                 The Adjoint of a Linear Operator 

 

Let 𝑉 be an inner product space and 𝑇 a linear operator on 𝑉 (i.e., 𝑇 is a linear 

transformation from 𝑉 into 𝑉). 

 

Def.  The Adjoint of 𝑻, written 𝑇∗, is a linear operator on 𝑉 whose matrix 

representation with respect to an orthonormal basis 𝛽 of 𝑉 is                      
[𝑇]∗

𝛽 = 𝐴∗, where 𝐴∗ is the transpose of 𝐴 = [𝑇]𝛽 . (Note: if 𝑉 was a vector 

space over the complex numbers then 𝐴∗ would be the conjugate transpose 

of 𝐴.  However, we will only be considering vector spaces over the real 
numbers). 

 

Theorem:  Let 𝑉 be a finite dimensional inner product space over ℝ and  

𝐹: 𝑉 →  ℝ, a linear transformation.  Then there exists a unique 𝑦 ∈ 𝑉 such 

that 𝐹(𝑣) =< 𝑣, 𝑦 > for all 𝑣 ∈ 𝑉. 

 

Proof:  Let 𝛽 = {𝑣1, … , 𝑣𝑛} be an orthonormal basis for 𝑉 and                            
                      𝑦 = ∑ 𝐹(𝑣𝑖)𝑣𝑖

𝑛
𝑖=1 . 

 

Define a linear transformation ℎ: 𝑉 → ℝ   by   ℎ(𝑣) =< 𝑣, 𝑦 >, for 1 ≤ 𝑖 ≤ 𝑛. 

 

Then we have: 

 ℎ(𝑣𝑗) =< 𝑣𝑗 ,  ∑ 𝐹(𝑣𝑖)𝑣𝑖
𝑛
𝑖=1 >= ∑ 𝐹(𝑣𝑖) < 𝑣𝑖 , 𝑣𝑗 >𝑛

𝑖=1  

                                                                     = 𝐹(𝑣𝑗)     (since {𝑣1, … , 𝑣𝑛} is orthonormal). 
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Since 𝐹 and ℎ are both linear transformations and they are equal on the basis 

𝛽, they must be equal on all of 𝑉. 

 

To see that 𝑦 is unique, suppose there is a 𝑦′ such that  

                       𝐹(𝑣) =< 𝑣, 𝑦′ >    for all 𝑣 ∈ 𝑉. 

Then < 𝑣, 𝑦 >=< 𝑣. 𝑦′ > for all 𝑣 ∈ 𝑉. 

But by an earlier theorem 𝑦 = 𝑦′,   so 𝑦 is unique. 

 

Ex.  Let  𝐹: ℝ2 →  ℝ  by  𝐹(𝑣1, 𝑣2) = 4𝑣1 − 𝑣2.  Find the unique vector      

𝑦 ∈ ℝ2 such that 𝐹(𝑣1, 𝑣2) =< 𝑣, 𝑦 > where 𝑣 = (𝑣1, 𝑣2). 

 

Let 𝛽 = {𝑒1, 𝑒2} be the standard ordered orthonormal basis for ℝ2. 

           𝑦 = (𝐹(𝑒1))𝑒1 + (𝐹(𝑒2))𝑒2 

               = 4𝑒1 − 1𝑒2 = (4, −1). 

Then:    𝐹(𝑣1, 𝑣2) =< (𝑣1, 𝑣2), (4, −1) >= 4𝑣1 − 𝑣2. 

 

 

Theorem:  Let 𝑉 be a finite dimensional inner product space over ℝ 

 And 𝑇  a linear operator on 𝑉.  Then there exists a unique function              

𝑇∗: 𝑉 → 𝑉 such that < 𝑇(𝑣), 𝑤 >=< 𝑣, 𝑇∗(𝑤) > for all 𝑣, 𝑤 ∈ 𝑉.  

Furthermore, 𝑇∗ is linear.   
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Proof:  Let 𝑤 ∈ 𝑉 and define 𝐺: 𝑉 →  ℝ  by 𝐺(𝑣) =< 𝑇(𝑣), 𝑤 >, for 𝑣 ∈ 𝑉. 

             First notice that 𝐺 is linear since for any 𝑣1, 𝑣2 ∈ 𝑉 and 𝑐 ∈ ℝ: 

                           𝐺(𝑐𝑣1 + 𝑣2) =< 𝑇(𝑐𝑣1 + 𝑣2), 𝑤 > 

                                                   =< 𝑐𝑇(𝑣1) + 𝑇(𝑣2), 𝑤 >   because 𝑇 is linear 

                                                          = 𝑐 < 𝑇(𝑣1), 𝑤 > +< 𝑇(𝑣2), 𝑤 > 

                                                    = 𝑐𝐺(𝑣1) + 𝐺(𝑣2). 

By the previous theorem there is a unique 𝑤′ ∈ 𝑉 such that: 

                                                           𝐺(𝑣) =< 𝑣, 𝑤′ >. 

Thus we have for all 𝑣 ∈ 𝑉: 

                                                            𝐺(𝑣) =< 𝑇(𝑣), 𝑤 >=< 𝑣, 𝑤′ >. 

 

So we can define:                        𝑇∗: 𝑉 → 𝑉  by     𝑇∗(𝑤) = 𝑤′. 

 

Thus we have:                              < 𝑇(𝑣), 𝑤 >=< 𝑣, 𝑇∗(𝑤) >. 

 

Let’s show that 𝑇∗is linear. 

 

Let 𝑤1, 𝑤2 ∈ 𝑉  and  𝑐 ∈ ℝ, then for any 𝑣 ∈ 𝑉 we have: 

        < 𝑣, 𝑇∗(𝑐𝑤1 + 𝑤2) >=< 𝑇(𝑣), 𝑐𝑤1 + 𝑤2 > 

                                                     = 𝑐 < 𝑇(𝑣), 𝑤1 > +< 𝑇(𝑣), 𝑤2 > 

                                                     = 𝑐 < 𝑣, 𝑇∗(𝑤1) > +< 𝑣, 𝑇∗(𝑤2) > 

                                                      =< 𝑣, 𝑐𝑇∗(𝑤1) + 𝑇∗(𝑤2) >. 
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Since this is true for any 𝑣 ∈ 𝑉, we have: 

                          𝑇∗(𝑐𝑤1 + 𝑤2) = 𝑐𝑇∗(𝑤1) + 𝑇∗(𝑤2). 

 

Thus 𝑇∗ is linear. 

 

 

Now let’s show that 𝑇∗ is unique.   

Suppose 𝑆: 𝑉 → 𝑉 is linear and for all 𝑣, 𝑤 ∈ 𝑉  

                             < 𝑇(𝑣), 𝑤 >=< 𝑣, 𝑆(𝑤) >. 

 

Since < 𝑇(𝑣), 𝑤 >=< 𝑣, 𝑇∗(𝑤) > for all  𝑣, 𝑤 ∈ 𝑉, we have 

                              < 𝑣, 𝑇∗(𝑤) >=< 𝑣, 𝑆(𝑤) >. 

Thus                   𝑇∗(𝑤) = 𝑆(𝑤) for all 𝑤 ∈ 𝑉. 

Hence 𝑇∗ = 𝑆, and 𝑇∗ is unique.     

 

The next theorem tells us that we can calculate a matrix representation of 𝑇∗, 

called that adjoint of 𝑻, by taking the transpose of a matrix representation of 

𝑇. 

Theorem: Let 𝑉 be a finite dimensional inner product space over ℝ and 𝛽 an 

orthonormal basis for 𝑉.  If 𝑇: 𝑉 → 𝑉 is a linear operator on 𝑉 then 

                                                    [𝑇∗]𝛽 = [𝑇]𝛽
∗ . 
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Proof:   Let 𝐴 = [𝑇]𝛽 ,   𝐵 = [𝑇∗]𝛽,  where 𝛽 = {𝑣1, … , 𝑣𝑛} is an orthonormal 

basis for 𝑉. 

                                  𝐵𝑖𝑗 =< 𝑇∗(𝑣𝑗), 𝑣𝑖 >=< 𝑣𝑖 , 𝑇∗(𝑣𝑗) >    

                                                                       =< 𝑇(𝑣𝑖), 𝑣𝑗 > 

                                                                        = 𝐴𝑗𝑖  

                                                                        = (𝐴∗)𝑖𝑗. 

So 𝐵 = 𝐴∗,  where 𝐴∗ is the transpose of the matrix 𝐴. 

 

 

Ex.  Let 𝑇 be a linear operator on ℝ3 given by  

              𝑇(𝑎1, 𝑎2, 𝑎3) = ((3𝑎1 − 𝑎3), (𝑎1 + 2𝑎2),  (𝑎1 + 𝑎2 + 𝑎3)) 

With respect to 𝛽,  the standard ordered basis on ℝ3.  Find the matrix 

representation of 𝑇∗ with respect to this basis. 

 

We start by finding a matrix representation of 𝑇 with respect to 𝛽. 

                                 [𝑇]𝛽 = (
3 0 −1
1 2 0
1 1 1

). 

So 𝑇∗ is the transpose of this matrix: 

                                 [𝑇∗]𝛽 = (
3 1 1
0 2 1

−1 0 1
). 
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Ex. Show that in the previous example < 𝑇(𝑣) , 𝑤 >=< 𝑣, 𝑇∗(𝑤) >,  for 

all 𝑣, 𝑤 ∈ ℝ3. 

 

Let 𝑣 =< 𝑎1, 𝑎2, 𝑎3 > ,     𝑤 =< 𝑏1, 𝑏2, 𝑏3 >. 

 

                      𝑇(𝑣) = (
3 0 −1
1 2 0
1 1 1

) (

𝑎1

𝑎2

 𝑎3

) = (

3𝑎1 − 𝑎3

𝑎1 + 2𝑎2

 𝑎1 + 𝑎2 + 𝑎3

) 

 

< 𝑇(𝑣), 𝑤 >=< ((3𝑎1 − 𝑎3), (𝑎
1

+ 2𝑎2),  (𝑎
1

+ 𝑎2 + 𝑎3)), (𝑏1, 𝑏2, 𝑏3) > 

                             = (3𝑎1 − 𝑎3)𝑏1 + (𝑎1 + 2𝑎2)𝑏2 + (𝑎1 + 𝑎2 + 𝑎3)𝑏3. 

 

 

𝑇∗(𝑤) = (
3 1 1
0 2 1

−1 0 1
) (

𝑏1

𝑏2

 𝑏3

) = (

3𝑏1 + 𝑏2 + 𝑏3

2𝑏2 + 𝑏3

−𝑏1 + 𝑏2

) 

 

< 𝑣, 𝑇∗(𝑤) >=< (𝑎1, 𝑎2, 𝑎3), ((3𝑏1 + 𝑏2 + 𝑏3), (2𝑏2 + 𝑏3), (−𝑏1 + 𝑏2)) > 

                             = 𝑎1(3𝑏1 + 𝑏2 + 𝑏3) + 𝑎2(2𝑏2 + 𝑏3) +  𝑎3(−𝑏1 + 𝑏2) 

                            = (3𝑎1 − 𝑎3)𝑏1 + (𝑎1 + 2𝑎2)𝑏2 + (𝑎1 + 𝑎2 + 𝑎3)𝑏3 

                            =< 𝑇(𝑣), 𝑤 >. 
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Theorem:  Let 𝑉 be a real inner product space and 𝑆 and 𝑇 linear operators on 

𝑉.  Then 

a.  (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ 
b.         (𝑐𝑇)∗ = 𝑐𝑇∗,   𝑐 ∈ ℝ  
c.         (𝑇𝑆)∗ = 𝑆∗𝑇∗ 
d.              𝑇∗∗ = 𝑇 
e.                 𝐼∗ = 𝐼. 

 

Below are the proofs of 𝑎 and 𝑐. 

a.  For 𝑣, 𝑤 ∈ 𝑉 we have; 

                        < 𝑣, (𝑆 + 𝑇)∗(𝑤) >=< (𝑆 + 𝑇)(𝑣), 𝑤 > 

                                                                 =< (𝑆(𝑣) + 𝑇(𝑣)), 𝑤 > 

                                                                 =< 𝑆(𝑣), 𝑤 > +< 𝑇(𝑣), 𝑤 > 

                                                                  =< 𝑣, 𝑆∗(𝑤) > +< 𝑣, 𝑇∗(𝑤) > 

For all 𝑣, 𝑤 ∈ 𝑉 so 

                                 (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗. 

𝑐.  For all 𝑣, 𝑤 ∈ 𝑉 we have: 

                         < 𝑣, 𝑆∗𝑇∗(𝑤) >=< 𝑆(𝑣), 𝑇∗(𝑤) > 

                                                          =< (𝑇𝑆)(𝑣), 𝑤 > 

                                                           =< 𝑣,  (𝑇𝑆)∗(𝑤) > 

 

So (𝑇𝑆)∗ = 𝑆∗𝑇∗. 
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Corollary: Let 𝐴 and 𝐵 be 𝑛x𝑛 matrices. Then: 

a. (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ 
b.       (𝑐𝐴)∗ = 𝑐𝐴∗,    for any 𝑐 ∈ ℝ 
c.      (𝐴𝐵)∗ = 𝐵∗𝐴∗ 
d.            𝐴∗∗ = 𝐴 
e.               𝐼∗ = 𝐼. 

 

Ex.  Let 𝑉 be a finite dimensional real inner product space.  Prove that if 𝑇 is 

invertible then 𝑇∗ is invertible and (𝑇∗)−1 = (𝑇−1)∗. 

 

Since 𝑇 is invertible, it has an inverse, 𝑇−1, and 𝑇𝑇−1 = 𝐼. 

We can then say that (𝑇𝑇−1)∗ = 𝐼∗. 

By part e of the last theorem 𝐼∗ = 𝐼, and by part c,   (𝑇𝑇−1)∗ = (𝑇−1)∗𝑇∗. 

Thus we have:        (𝑇−1)∗𝑇∗ = 𝐼. 

That means that 𝑇∗ has an inverse given by (𝑇−1)∗. 

That is,  (𝑇∗)−1 = (𝑇−1)∗. 

                                                              

                                                                       


