Jordan Canonical Form

Recall that earlier we saw that if T:V — V was a linear operator on an
n-dimensional vector space represented in an ordered basis by a matrix 4, then T
(or A) was diagonalizable if

1. The characteristic polynomial splits over R, ie
p(l) =det(A—A) =c(4, — A1) (A,—4); c€ER
2. For each eigenvalue 4;, the multiplicity of A; equals the dim(N(T — )lil)).

However, we also saw that if the characteristic polynomial of T splits over R that
T might not be diagonalizable (eg, A = [é ﬂ) Given that the characteristic

polynomial of T splits over R, we want to find an ordered basis for V so that T is
as close to being diagonal as possible. We will see that we can find an ordered
basis B for IV such that:

A; 0 0 - 017

0 A4, 0 - 0
[Tl =10 0 4 - 0
0 0 o - :

| 0 0 0 Al

where 0 is a zero matrix and

A 1 0 - e 0]

0 A4 1 N (|
a={0 0 A
o o o - - 1

0 0 0 - 0 A

That is, each 4; will have 4;, the i*" eigenvalue, along the diagonal, ones along the
“superdiagonal” of A;, and zeros everywhere else. The matrix [T]y is called the
Jordan canonical form of T.



Ex. Let B = {v,,v,, V3, V,} be an ordered basis for Vand T:V — V alinear
operator with

2 1.0 0
02 1 0
A=ITlr=1y o 2 ol
00 0 3

Identify N(T — A;I) for each eigenvalue of T

Notice that in this case:

10 2 10
A=[01 A], where A; =10 2 1| and 4, =[3].
2 0 0 2

The characteristic polynomial for T is

2—2 1 0 0

_ 0 2—1 1 0

det(A — AI) = det 0 0 9_ 1 0

0 0 0 3—1
=2-133-2).

Thus T has A = 2 as an eigenvalue of multiplicity 3 and A = 3 as an eigenvalue of
multiplicity 1. Let’s find the eigenvectors of T.

For A = 2 we have to find vectors that span the null space of A — 21:

2 100 [2 00 0] [0100
A_21=0210‘_I()200‘=I()010'
0020/ (0020 f0oo000
000 3 looo 2 loo o1



(A—=2Dv =

o O OO

or

1 0 0][* 0
0 1 of[x| _|o
0 0 offx3] |o
0 0 1]lxs 0

X2 0
x31 |0
01 fol
X4 0

So x, = x3 = x4 = 0 and x; can be any real number.

Thus the null space of A — 21 is given by {< a,0,0,0 >| a € R} and is spanned
by < 1,0,0,0 >. Since the basis for V is {v;, v5, v3,7,}, v; =< 1,0,0,0 >isan
eigenvector associated with A = 2 for T. We can check this by:

2

Avl = 0

0

or

1 0 0J[1] [2

1 ollo| o
o 2 oflo] " |o
o o 3llol lo

1 0 0 3 00

2 1.0/ _|o 30
0 2 0 0 0 3
0 0 3 0 0 O
-1 1 0 0][*1]
-1 1 0]|X2
0 0 -1 O0f]|*s3
0 0 0 0J1X4]
—X1 + X,
_xz +X3

_x3

0

1

8=2171

0
0 -1 1 0 0
of_|o -1 10
0 0 0 —1 of
3. 0 0 0 0

SR




So we have:
—X1 + X, =0
—x; +x3 =0
—x3 =10

= x; =X, =x3 =0, andx,can beanyreal number.

Thus the null space of A — 31 is given by {< 0,0,0,a >| a € R} and is spanned
by < 0,0,0,1 >.

Thus v, =< 0,0,0,1 > is an eigenvector associated with A = 3 for T.

So we can’t diagonalize T because there are only 2 linearly independent eigenvectors for
T and dim(V) = 4.

In our example the ordered basis for V was B = {v;,v,,v3,v,} and v; and v,
were eigenvectors for T, but not the basis vectors v, and v3;. For example:

2 1 0 o0}]fo 1
0 2 1 0f|1 2
T(Uz) B O 2 0 0 == == 171 + 2172.
0 0 3110

0

o
(en)

Thus (T — 21)v, = v,.

Similarly:
2 1 0 0]]o 0
T(v3) = 8 (2) ; 8 (1) = ; = v, + 2v;.
0 0 0 3110 0

Thus (T — 21)v; = v,.



So neither v, nor v3 is in the null space of T — 21, however,
(T - ZI)ZUZ == 0
(T - 2])3173 == 0

That is, v, and v5 are in the null space of (T — 21)? and (T — 2I)3 respectively.

We can see this because:
(T —2Dv, = v,
and v, is in the null space of (T — 2I) thus
(T =2D[(T — 2)v,] = (T — 2Dv,
(T — 2)?*v, = 0.

Now since (T — 2I)v; = v, and (T — 21)?v, = 0 we have:

(T —2Dv; =v,
(T — 2D?*[(T — 2D)v3] = (T — 21)*v,
(T —21)3v; = 0.

So although v, and v; are not eigenvectors of T associated with A = 2, that is
(T-2Dv,=v, #0 and (T —2)v; =v, #0,

(T —2Dv, = vy and (T — 21)?v3 = (T — 2D[(T — 2Dv3] = (T — 2Dv, = v,
are eigenvectors of T associated with 1 = 2.

Def. Let T be a linear operator on a vector space I/ and A € R. A nonzero vector
v € Vis called a generalized eigenvector of T corresponding to A if
(T — AP (v) = 0 for some positive integer p.

Notice that if p = 1 then v is an eigenvector of T.



If v is a generalized eigenvector of T and p is the smallest positive integer with
(T — ADP(v) = 0, then (T — ADP~1(v) is an eigenvector of T corresponding to
A since: 0= (T— ADP(v) = (T — AD[(T — AP~ 1(v)].

Thus (T — ADP~1(v) # 0is in the null space of T — Al.

Ex. In the last example we showed that (T — 21)?v, = 0 and (T — 2I)3v; = 0.
Show these equations are true by calculating the matrix representation of
(T — 2I)% and (T — 2I)3 with respect to the ordered basis B = {v;, V5, V3, V4 }.

With respect to the basis B = {v;, v,, v3, v,} we have:

0 1
_lo o
a-21=|) 0
0 0

0 1
o200
(a-2m2 =2 0
0 0

0 0
a0 0
-2 =0 ¢
0 0

0
(A-2D%v, = |
0

0

== oo RO o o

o O O O

|

_ O O

N e = ) _ o O O

o O O

0100 [00 1 0
0010/ oo o000
000 0 |oo o0 o0
o 00 1 lo oo 1
010 0] [0 0 0 0
0010/ |00 00
000 o0 |0 o o0 ol
o000 1 lo o o 1
01701 [0
ol{1] o
of{o] ~ |0
1llo] lo



(A4-20)3%v; =

o O OO
o O OO
o O O O
_ o O O
o r O O

So v, and v are generalized eigenvectors of T corresponding to 1 = 2.

Notice that two different linear operators can have the same characteristic
polynomial. Thus knowing the characteristic polynomial of a linear operator does
not immediately tell us if it’s diagonalizable.

Ex. Given a basis B = {v,,v,,v3,v,} for V and two different linear
transformations:

2 1 0 0
_ 10 2 1 0
A=[Tlp = 0 0 2 0
0 0 0 3
2 0 0 0
;e |02 0 0
A'=T"]p = 0 0 2 0
0 0 0 3
We have:
2—-1 1 0 0
_ o 0 2-1 1 0
p(A) = det(4A — Al) = det 0 0 91 0
0 0 0 3-21

=2-133@-2.



2—A1 0 0 0
1ray — r _ 0 2—1 0 0
p'(1) =det(A" — Al) = det 0 0 91 0
0 0 0 3—-1

=2-23GB-21.

Sop(A) =det(A — AI) = p' (1) = det(4A" — AI), but A is not diagonalizable while
A' is diagonalizable (since it’s already diagonal).

Def. Let T be a linear operator on a vector space I/, and let A be an eigenvalue of
T. The generalized eigenspace of T corresponding to A, denoted Kj, is

K, ={v e V| (T — AI)Pv = 0, for some positive integer p}.

Notice that K} is a subspace of V since if v;, v, € K then
(T — AI)P1v; = 0 for some py, and (T — AI)P2v, = 0 for some p,.
If we assume p, = p4 then
(T — AD)P2(vy + cvy) = (T — ADP2(vy) + c(T — AI)P2(v,)
= (T = AN@PO((T = ADYPs () + ¢(0)
= (T — AN®P27PY(0) + 0 = 0.

Thus (v, + cv,) € K and K is a subspace of I/.

Notice also that the eigenspace, E;, associated with the eigenvalue 4 is a
subspace of K since every eigenvector is also a generalized eigenvector.



The following two theorems will be useful for calculating a basis for a vector space
IV so that a linear operator T is in Jordan form.

Theorem: Let T be a linear operator on a finite dimensional vector space V such
that the characteristic polynomial of T splits over R, and let A4, ..., A; be distinct
eigenvalues of T with corresponding multiplicities my, ..., my. For1 < i < k let
B; be an ordered basis for K . Then

2. B =B;U:--UBjisan ordered basis for V

3. dim(KAi) =m; forall i.

Now we want to focus on how to find a basis for the generalized eigenspace that
will give rise to Jordan canonical form for the linear operator T

Def. Let T be a linear operator on a vector space I/ and let v be a generalized
eigenvector of T corresponding to A. Suppose that p is the smallest positive
integer for which (T — AI)Pv = 0. Then the ordered set:

{(T—ADP Yy, (T — AP 2p,...,(T — ADv, v}
Is called a cycle of generalized eigenvectors of T corresponding to A.

(T — AP~y and v are called the initial vector and the end vector of the cycle.
The length of the cycle is p.

Since (T — ADPv = 0, (T — AI)P~ v is an eigenvector of T corresponding to A
and the other elements of the cycle are not eigenvectors.

Theorem: Let T be a linear operator on a finite dimensional vector space V, and
let A be an eigenvalue of T. Then K has an ordered basis consisting of a union of
disjoint cycles of generalized eigenvectors corresponding to A.
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Putting a linear operator into Jordan canonical form

1. Find all eigenvalues by solving det(A — AI) = 0, where A = [T] for the given
basis B.

2. Find all eigenvectors by solving (4 — Al)v = 0.

3. For each eigenvalue A of T, if the multiplicity of A is larger than

dim[N (A — Al)] then generalized eigenvectors are part of the basis to put
T into Jordan canonical form.

4 6 —2
Ex. Let[T]p=4=|-1 -1 1]. Find a basis B’ for V such that [T]p is in
0 0 1

Jordan form. Find the Jordan form of A.

First let’s find the eigenvalues of T.

4— 12 6 -2
det(4A—Al) = det[ -1 -1-2 1 ]
0 0 1-2

=@ -DE1-DA -] = (D6 = )]
=1-D[(-1-1)@-2)+6]
=1-MDA*-31+2]=—-1-2)(A-1)*=0

So the eigenvalues are A = 2,1 (double root) .

Now let’s find the eigenvectors corresponding to A = 2.

To find the null space of (A — 2I) we must solve:

2 6 —27[*%1 0
(A-2Dv = [—1 -3 1 ] [le = [0}
0 0 -—-11l1%3 0



Using row operations we get:

2 6 -2 1 3 -1 1 3 -1
[—1 -3 1]—>[—1 -3 5]—>[ 0 0 4]
0

1 -
0 —1lzfioRil o o —p]fetRR| o o 4
1 3 -1 1 3 -1 1 3
O 0 0 1|——1 0 0 1|l——| 0 0
KRz | 0 1 R;+R3—-R3 0 0 Ry;+R1-R; 0
So we have:
1 3 07 [*1 0
0 0 11 |X2]1 =10
0 0 0l LX3 0
x1+3x, =0 =  x;=-3x,
X3 = O

So the null space of (A — 2I) is given by vectors of the form:
< -3a,a,0>=a<-3,1,0>; a € R.

Thus < —3,1,0 > is a basis for the null space and v; =< —3,1,0 > isan
eigenvector corresponding to A = 2.

Now let’s find the eigenvectors correspondingto 4 = 1.

To find the null space of (A — 1I) we must solve:

3 6 —2][*1 0
a-pr=l-t =2 1l =lo|
0 0 011X3 0

11



Using row operations we get:

[ 3 6 —2] [ 0 0 1]
1 -2 1|——]-1 =2 1
o o olfiR2R G o0

0 0 1 -1 -2 0 1 2
—| -1 -2 O —| O 0 1|——| 0 O
0

R2 —R1—>R2 0 0 0 R2<—)R1

So we have:

X, + 2x, =0 = X =—2x,
X3 - O

So the null space of (A — I) is given by vectors of the form:
< -2a,a,0>=a<-2,1,0>; a €R.

Thus < —2,1,0 > is a basis for the null space and v, =< —2,1,0 > isan
eigenvector correspondingto A = 1.

However, since the multiplicity of A = 1 is 2, we have:

2=dim(K)) ={veV|(T-ADPv =0, peZ*}.



13

Since there is only one eigenvector correspondingto A = 1, and dim(K;) = 2,
when A = 1, the basis of K; is made up one eigenvector and one vector that is a
generalized eigenvector (but not an eigenvector). Since we know that for a
generalized eigenvector there is a smallest p such that (T — AI)Pv = 0 and that
(T — AP~ v is an eigenvector, for the generalized eigenvector in K; that is not
the eigenvector v, we must have that (A — Al)v is an eigenvector. Thus to find v
we can solve:

A-Dv=v,
3 6 —2]1[*1 —2
[_1 2 1] [H 1].
0 0 0llx3 0

Using row operations on the augmented matrix we get:

[3 6—2—2] [0 0 11] [o 0 11]
-1 -2 1| 1|l—|-1 -2 1| 1|———| -1 =2 o]0
0o o0 ol olfit3RemRi] o o o olfeRimRl o o olo
—1 =2 0]0 1 2 0]0

Iﬁ) 0 0 1 lﬂ 0O 0 11 11.

SR ) o olol *7'Lo o olo
So we have:

1 2  01[*1 0

0 O 11X2]| = 1

0 O 01 LX3 0

X1+2x2 :0 —1 x1:_2x2
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Solutionsetis: < —2a, a, 1 >=<0,0,1>+4+a<-2,1,0>, a € R.
Taking a = 0, we can take v = v3 =< 0,0,1 > as the 2" basis vector of K.

So now if we take the basis vectors B’ = {v,,v,, v3}:
v, =<-3,1,0>
v, =<-2,1,0 >
v; =<0,0,1 >.

[T]5r will be in Jordan form. We can see this by taking the change of basis matrix
P and calculating its inverse, P~ (see notes on A Matrix’s Rank and Calculating
Inverse Matrices):

-3 -2 0 -1 =2 0
1 1 0|l= Pl1=|1 3 0]
0

0 1 0 0 1

P =

Now using the change of basis formula, A’ = P~1AP we get:

-1 -2 0] 4 6 -21[-3 -2 O
[Ty =A"=P'AP=| 1 3 o||-1 -1 1|l 1 1 o

0 0 1 0 0 1 0 0 1
-1 -2 01[-6 -2 =2
=1 1 3 0 2 1 1
0 0 1 0 0 1
2 0 0
=10 1 1|, whichisinlJordan canonical form.
0 0 1
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Note: As soon as we saw that the characteristic polynomial split over R and

that A = 2 was an eigenvalue of multiplicity one and A = 1 was an eigenvalue of
multiplicity two where Dim(N(T — I)) = 1, we knew that there was a basis B’ for
which:

2 0 0
Tl =10 1 1f
0 0 1

Most of the work of the previous example was to find the basis B’.

Ex. Let T be alinear operator on V. Given a basis B = {w;, w,,w3}, T has the
form

2 1 0
[Tls=A=|0 2 2].
0 0 2

Find the Jordan canonical form of T and the basis B’ that puts T in Jordan
canonical form.

First let’s find the eigenvalues of T.

2—41 1 0
det(A—AI) =det| 0 2—21 2
0 0 2—21

=(2-1)3=0.

So A = 2 is an eigenvalue of multiplicity 3.
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Now let’s find the eigenvectors for 4 = 2.

To find the null space for (A — 2I) we must solve:
0 1 07 [*1 0
(A—-2Dv = |0 0 2[1*21 =10
0 0 01 LX3 0
xz = O =4 xZ = 0
ZX3 == 0 = X3 == 0.

So the null space of (A — 2I) isgivenby < a,0,0 >=a < 1,0,0 >; a € R.

Thus we can take v; =< 1,0, 0 > as an eigenvector of A.

So the eigenspace E ; has dimension equal to one. Since there is only one
eigenvector, but dimV = 3, we need to find two generalized eigenvectors (that
are not eigenvectors) v, and v; to complete the basis for V. Notice that the basis
for K; can’t be the union of two or three cycles because the initial vector of a
cycle is an eigenvector and there is only one eigenvector for A. Thus the basis for
K, must be a single cycle of length 3, B’ = {(4 — 2I)%v, (A — 2I)v, v}, where
(A — 21)?v is an eigenvector of A.

So let’s solve (A — 21)%v = v;.

0 1 0]]0 07 [*1 1
a-w=lo o 2l o offx|-|o
0o 0 O0lt0 0 0lbxs 0

0 0 2][*1 1
-0 o off|-fo
0 0 0lLx3 0

ZX3=1 - X3=

S
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1
So the solution setis < a, b, 3 > a,b €R or

a<LQO>+b<QLO>+<QQ%>

Soif wetake v = v; =<0, 0,% > (ie take a = b = 0) we have:

i § 38

So the basis B’ for Jordan canonical form is given by:

ISH N )

v, =< 1,0,0 >
v, =< 0,1,0 >

vy =< 0,0,>>.

We can check that this basis puts A in Jordan canonical form by taking the change
of basis matrix P and its inverse P~ and calculating A’ = P~1AP.

1 0 0 1 0 0

p=|0 0] = p1=]o0 1 o0
0 1
2

1
0 0 0 2

1 1 0
0 ”0 2 2] 1
0 o 2 0

1 0 02 1 O
=[O 1 0” 0 2 1]
0O 0 2L 0 0 1

2 1 0
0 2 1|, which is in Jordan canonical form.
0 0 2

[Ty = A’ = P71AP =

NRrO O



