

The Adjoint of a Linear Operator- HW

1. Let $F: \mathbb{R}^3 \rightarrow \mathbb{R}$ be a linear transformation given by

$$F(a_1, a_2, a_3) = 3a_1 - 2a_2 + a_3, \quad a_1, a_2, a_3 \in \mathbb{R}.$$

Let β be the standard ordered basis for \mathbb{R}^3 . Find a vector $v \in \mathbb{R}^3$ such that $F(a_1, a_2, a_3) = \langle (a_1, a_2, a_3), v \rangle$.

2. Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear operator on \mathbb{R}^2 given by

$$T(a_1, a_2) = (a_1 + 2a_2, 3a_1 - a_2)$$

with respect to the standard basis on \mathbb{R}^2 .

- a. Find a matrix representation of T and T^* .

- b. Show by direct calculation that for all $v, w \in \mathbb{R}^2$

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle.$$

3. Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a linear operator on \mathbb{R}^3 given by

$$T(a_1, a_2, a_3) = ((2a_1 + a_2 - a_3), (a_2 + 3a_3), (3a_1 - a_2))$$

with respect to the standard basis on \mathbb{R}^3 .

- a. Find a matrix representation of T and T^* .

- b. Show by direct calculation that for all $v, w \in \mathbb{R}^3$

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle.$$

4. Let T be a linear operator on a real inner product space.

- a. Let $S_1 = T + T^*$. Prove that $S_1 = S_1^*$.

- b. Let $S_2 = TT^*$. Prove that $S_2 = S_2^*$.

5. Give an example of a linear operator T from \mathbb{R}^2 to \mathbb{R}^2 such that the null space of T is NOT equal to the null space of T^* .