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                                               Inner Product Spaces  

 

Def.  Let 𝑉 be a vector space (over ℝ).  An inner product on 𝑉 is a function that 

assigns to every pair of vectors 𝑣, 𝑤 ∈ 𝑉 a real number < 𝑣, 𝑤 >  such that for all 

𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝑐 ∈ ℝ the following hold: 

      a.   < 𝑣 + 𝑢, 𝑤 > =< 𝑣, 𝑤 > +< 𝑢, 𝑤 > 

      b.   < 𝑐𝑣, 𝑤 > = 𝑐 < 𝑣, 𝑤 > 

      c.   < 𝑣, 𝑤 > =< 𝑤, 𝑣 > 

      d.   < 𝑣, 𝑣 > > 0  if 𝑣 ≠ 0. 

A vector space 𝑉 with an inner product, <  ,   > , is called an inner product space.  

 

Ex.  Let 𝑣, 𝑤 ∈ ℝ𝑛 be given by  𝑣 =< 𝑎1, … , 𝑎𝑛 > ,    𝑤 =< 𝑏1, … , 𝑏𝑛 >  in the 

       standard ordered basis for ℝ𝑛.  Then define 

                          < 𝑣, 𝑤 >= ∑ 𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛.𝑛
𝑖=1  

       This is the standard inner product on ℝ𝒏.    

       Notice that this inner product satisfies conditions a-d above.  For example: 

                    Let 𝑢 =< 𝑑1, … , 𝑑𝑛 > then 

                < 𝑣 + 𝑢, 𝑤 > =≪ (𝑎1 + 𝑑1), … , (𝑎𝑛 + 𝑑𝑛) >, < 𝑏1, … , 𝑏𝑛 >> 

                                           = ∑ (𝑎𝑖 + 𝑑𝑖)𝑏𝑖
𝑛
𝑖=1    

                                           = ∑ (𝑎𝑖𝑏𝑖 + 𝑑𝑖𝑏𝑖)
𝑛
𝑖=1  

                                           = ∑ 𝑎𝑖𝑏𝑖 + ∑ 𝑑𝑖𝑏𝑖
𝑛
𝑖=1

𝑛
𝑖=1  

                                           =< 𝑣, 𝑤 > +< 𝑢, 𝑤 >. 
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Ex.  Let 𝑉 = 𝐶[0,1] = {Continuous real valued functions on [0,1]}. We can define    

        an inner product on 𝐶[0,1] by  

                                < 𝑓, 𝑔 > = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
1

0
. 

        Standard properties of Riemann integrals allow us to verify conditions a-d. 

 

Theorem:  Let 𝑉 be an inner product space.  For 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝑐 ∈ ℝ we have 

           i.     < 𝑢, 𝑣 + 𝑤 > =< 𝑢, 𝑣 > +< 𝑢, 𝑤 >     

          ii.     < 𝑢, 𝑐𝑣 > = 𝑐 < 𝑢, 𝑣 > 

          iii.     < 𝑢, 0 > =< 0, 𝑢 > = 0 

           iv.    < 𝑢, 𝑢 > = 0  if and only if 𝑢 = 0. 

            v.     If  < 𝑢, 𝑣 > =< 𝑢, 𝑤 > for all 𝑢 ∈ 𝑉 then 𝑣 = 𝑤. 

 

     Proof of i. and v.:    

        i.    < 𝑢, 𝑣 + 𝑤 >=< 𝑣 + 𝑤, 𝑢 >                               by property c. 

                                       =< 𝑣,   𝑢 >  +< 𝑤, 𝑢 >                by property a. 

                                       =< 𝑢, 𝑣 > +< 𝑢, 𝑤 >                   by property c. 

 

        v.     Suppose  < 𝑢, 𝑣 > =< 𝑢, 𝑤 > for all 𝑢 ∈ 𝑉 then 

                                  < 𝑢, 𝑣 >  −< 𝑢, 𝑤 > = 0 

                               < 𝑢, 𝑣 >  +< 𝑢, −  𝑤 > = 0                by property ii. 

                                                  < 𝑢, 𝑣 − 𝑤 > = 0                by property i. 

                 The last line is true for all 𝑢 ∈ 𝑉, so in particular 𝑢 = 𝑣 − 𝑤. 

                                            < 𝑣 − 𝑤, 𝑣 − 𝑤 > = 0  ⟹    𝑣 − 𝑤 = 0  by iv. 

                  So 𝑣 = 𝑤. 
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Def.  A vector space 𝑉 is called a normed linear space if given any 𝑣 ∈ 𝑉 there is a 

real number, ‖𝑣‖, called the norm of 𝑣, with the following properties: 

a.   ‖𝑣‖ ≥ 0, and ‖𝑣‖ = 0 if and only if 𝑣 = 0. 

b.   ‖𝑐𝑣‖ = |𝑐|‖𝑣‖ for all 𝑐 ∈ ℝ. 

c.   ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖,    for all 𝑣, 𝑤 ∈ 𝑉. 

 

 

Def.  Let 𝑉 be an inner product space.  For 𝑣 ∈ 𝑉, define the norm or length of 𝑣 

by ‖𝑣‖ = √< 𝑣, 𝑣 > . 

We will see shortly that this definition of ‖𝑣‖ for an inner product space has the 

three properties of a norm defined above. 

 

 

Ex.  Let 𝑉 = ℝ𝑛.  If 𝑣 =< 𝑎1, … , 𝑎𝑛 > in the standard ordered basis for ℝ𝑛 then 

                   ‖𝑣‖ = √< 𝑣, 𝑣 >= √𝑣 ∙ 𝑣 = √𝑎1
2 + ⋯ + 𝑎𝑛

2  

                                                                     = [∑ 𝑎𝑖
2]𝑛

𝑖=1

1

2. 

        This is the standard norm on ℝ𝒏 which is just the Euclidean distance 

        between (𝑎1, … , 𝑎𝑛) and (0, … ,0).     
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Ex.   Let 𝐶[0,1] be an inner product space with  

                          < 𝑓, 𝑔 >= ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥;      𝑓, 𝑔 ∈ 𝐶[0,1]
1

0
.    

        Let 𝑓(𝑥) = 𝑥 and 𝑔(𝑥) = 3𝑥 − 2.  Find  ‖𝑓‖ and show that < 𝑓, 𝑔 > = 0. 

 

         ‖𝑓‖ = √< 𝑓, 𝑓 >= (∫ (𝑥)(𝑥)𝑑𝑥)
1

0

1

2           

                                           = (∫ 𝑥2𝑑𝑥)
1

0

1

2            

                                            = (
𝑥3

3
|

1
0

)

1

2
 =√

1

3
 .     

   

          < 𝑓, 𝑔 > = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = ∫ 𝑥(3𝑥 − 2)𝑑𝑥
1

0

1

0
  

                                                              = ∫ (3𝑥2 − 2𝑥)𝑑𝑥
1

0
     

                                                               = (𝑥3 − 𝑥2)|1
0

 

                                                               = (1 − 1) = 0. 

 

Theorem:  Let 𝑉 be an inner product space over ℝ .  Then for all 𝑢, 𝑣 ∈ 𝑉 and     

𝑐 ∈ ℝ we have: 

a.   ‖𝑐𝑣‖ = |𝑐|‖𝑣‖ 

b.    ‖𝑣‖ = 0  if and only if 𝑣 = 0 and ‖𝑣‖ ≥ 0. 

c.   | < 𝑣, 𝑤 > | ≤ ‖𝑣‖‖𝑤‖.     This called the Cauchy-Schwarz inequality. 

d.   ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖.       This is called the triangle inequality. 
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Proof:   

a.   ‖𝑐𝑣‖ = √< 𝑐𝑣, 𝑐𝑣 > 

                = √𝑐2 < 𝑣, 𝑣 > 

                = |𝑐|√< 𝑣, 𝑣 >= |𝑐|‖𝑣‖ 

                 

b.   ‖𝑣‖ = 0  ⟺   (if and only if)  √< 𝑣, 𝑣 >= 0 

                                                ⟺         < 𝑣, 𝑣 > = 0 

                                                ⟺                        𝑣 = 0. 

         In addition,    ‖𝑣‖ = √< 𝑣, 𝑣 >≥ 0,   because < 𝑣, 𝑣 > ≥ 0. 

 

c.  For all 𝑣, 𝑤 ∈ 𝑉 and 𝑐 ∈ ℝ we have 

            0 ≤ ‖𝑣 − 𝑐𝑤‖2 =< 𝑣 − 𝑐𝑤, 𝑣 − 𝑐𝑤 > 

                                          =< 𝑣, 𝑣 > −2𝑐 < 𝑣, 𝑤 > +𝑐2 < 𝑤, 𝑤 >.  

 

           In particular this is true for  𝑐 =
<𝑣,𝑤>

<𝑤,𝑤>
 ,   assuming 𝑤 ≠ 0. 

           0 ≤< 𝑣, 𝑣 > −2
<𝑣,𝑤>

<𝑤,𝑤>
< 𝑣, 𝑤 > + (

<𝑣,𝑤>

<𝑤,𝑤>
)

2

< 𝑤, 𝑤 >. 

                 =< 𝑣, 𝑣 > −
(<𝑣,𝑤>)2

<𝑤,𝑤>
           

             ⟹            
(<𝑣,𝑤>)2

<𝑤,𝑤>
≤< 𝑣, 𝑣 >. 

                         (< 𝑣, 𝑤 >)2 ≤< 𝑣, 𝑣 >< 𝑤, 𝑤 > = ‖𝑣‖2‖𝑤‖2 

                           | < 𝑣, 𝑤 > | ≤ ‖𝑣‖‖𝑤‖.      

 

 If 𝑤 = 0 then 0 = | < 𝑣, 𝑤 > | ≤ ‖𝑣‖‖𝑤‖ = ‖𝑣‖(0) = 0.  
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d.    ‖𝑣 + 𝑤‖2 =< 𝑣 + 𝑤, 𝑣 + 𝑤 > 

                          =< 𝑣, 𝑣 > +2 < 𝑣, 𝑤 > +< 𝑤, 𝑤 > 

                          = ‖𝑣‖2 + 2 < 𝑣, 𝑤 > +‖𝑤‖2 

                          ≤ ‖𝑣‖2 + 2| < 𝑣, 𝑤 > | + ‖𝑤‖2 

                          ≤ ‖𝑣‖2 + 2‖𝑣‖‖𝑤‖ + ‖𝑤‖2              by part c. 

                            = (‖𝑣‖ + ‖𝑤‖)2 

 

            ⟹      ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖.        

                    

Properties a,b, and d show that ‖𝑣‖ = √< 𝑣, 𝑣 >  defines a norm on 𝑉. 

 

 

Ex.  What do the Cauchy-Schwarz inequality and the triangle inequality say for 

        a.    ℝ𝑛 with the standard inner product? 

        b.   𝐶[0,1] with the inner product  < 𝑓, 𝑔 >= ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥.
1

0
  

 

a.   Let 𝑣 =< 𝑎1, … , 𝑎𝑛 > ,   𝑤 =< 𝑏1, … , 𝑏𝑛 > in ℝ𝑛.   

       The Cauchy Schwarz inequality says: 

         | < 𝑣, 𝑤 > | ≤ ‖𝑣‖‖𝑤‖.      

         | ∑ 𝑎𝑖𝑏𝑖| ≤ (𝑛
𝑖=1 [∑ 𝑎𝑖

2]𝑛
𝑖=1

1

2)([∑ 𝑏𝑖
2]𝑛

𝑖=1

1

2).  

      

          The triangle inequality says: 

          ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖.        

          [∑ (𝑎𝑖 + 𝑏𝑖)
2]𝑛

𝑖=1

1

2 ≤ [∑ 𝑎𝑖
2]𝑛

𝑖=1

1

2 + [∑ 𝑏𝑖
2]𝑛

𝑖=1

1

2. 
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b.   For 𝑓, 𝑔 ∈ 𝐶[0,1] we have: 

      the Cauchy-Schwarz inequality:              | < 𝑓, 𝑔 > | ≤ ‖𝑓‖‖𝑔‖.       

       | ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥| ≤ (∫ 𝑓(𝑥)𝑓(𝑥)𝑑𝑥)
1

0

1

2 (∫ 𝑔(𝑥)𝑔(𝑥)𝑑𝑥)
1

0

1

2 
1

0
  

                                        = (∫ 𝑓(𝑥)2𝑑𝑥)
1

0

1

2 (∫ 𝑔(𝑥)2𝑑𝑥)
1

0

1

2 .   

 

        The triangle inequality:                         ‖𝑓 + 𝑔‖ ≤ ‖𝑓‖ + ‖𝑔‖.       

         (∫ (𝑓(𝑥) + 𝑔(𝑥))
2

𝑑𝑥)
1

0

1

2
≤ (∫ 𝑓(𝑥)2𝑑𝑥)

1

0

1

2 + (∫ 𝑔(𝑥)2𝑑𝑥)
1

0

1

2.  

 

 

Ex.  Show that ‖𝑣‖ = ∑ |𝑥𝑖|𝑛
𝑖=1  , where 𝑣 =< 𝑥1, … , 𝑥𝑛 > is a norm on ℝ𝑛, but 

        ‖𝑣‖ = ∑ |𝑥𝑖|2𝑛
𝑖=1  is not a norm.   

 

‖𝑣‖ = ∑ |𝑛
𝑖=1 𝑥𝑖| : 

a.  ‖𝑣‖ = ∑ |𝑥𝑖|
𝑛
𝑖=1 ≥ 0 since |𝑥𝑖| ≥ 0 for all 𝑖 = 1, … , 𝑛.  ‖𝑣‖ = 0 if and only if 

     𝑣 = 0, since ‖𝑣‖ = ∑ |𝑥𝑖|
𝑛
𝑖=1 = 0   ⟺   |𝑥𝑖| = 0 for 𝑖 = 1, … , 𝑛.   

b.   ‖𝑐𝑣‖ = ∑ |𝑛
𝑖=1 𝑐𝑥𝑖| = ∑ |𝑐||𝑥𝑖| = |𝑐|‖𝑣‖𝑛

𝑖=1  for all 𝑐 ∈ ℝ. 

c.    ‖𝑣 + 𝑤‖ = ∑ |𝑛
𝑖=1 𝑥𝑖 + 𝑦𝑖| ≤ ∑ (|𝑥𝑖| + |𝑦𝑖|)

𝑛
𝑖=1 =‖𝑣‖ + ‖𝑤‖. 

 

‖𝑣‖ = ∑ |𝑥𝑖|
2𝑛

𝑖=1 ;  fails b and c: 

b.   ‖𝑐𝑣‖ = ∑ |𝑐𝑥𝑖|
2 = ∑ |𝑐|2|𝑥𝑖|

2 = |𝑐|2𝑛
𝑖=1 ‖𝑣‖𝑛

𝑖=1 ;    

       if |𝑐| ≠ 1 then ‖𝑐𝑣‖ ≠ |𝑐|‖𝑣‖. 

c.   Let 𝑣 = 𝑤 =< 1,1 >,  then ‖𝑣 + 𝑤‖ = 22 + 22 = 8,                                          

      ‖𝑣‖ + ‖𝑤‖ = 2 + 2 = 4,   and ‖𝑣 + 𝑤‖ ≰ ‖𝑣‖ + ‖𝑤‖. 
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Theorem:   Let 𝑣 and 𝑤 be non-zero vectors in ℝ𝑛 and θ the angle between them. 

Then:  

< 𝑣,   𝑤 >=  𝑣 ⋅ 𝑤 = ‖ 𝑣‖ ‖𝑤‖ cos 𝜃. 

 

By the law of cosines: 

         ‖ 𝑣 − 𝑤‖2 = ‖𝑣‖2 + ‖𝑤‖2 − 2 ‖𝑣‖ ‖𝑤‖ cos 𝜃 

 

Rearranging the terms we get: 

2 ‖𝑣‖ ‖𝑤‖ cos 𝜃 =  ‖𝑣‖2 + ‖𝑤‖2 − ‖ 𝑣 − 𝑤‖2. 

 

     ‖𝑣‖ ‖𝑤‖ cos 𝜃 = 1

2
(‖𝑣‖2 + ‖𝑤‖2 − ‖ 𝑣 − 𝑤‖2)  

 

                                  =
1

2
(𝑣 ⋅ 𝑣 + 𝑤 ⋅ 𝑤 − (𝑣 − 𝑤) ⋅ (𝑣 − 𝑤)) 

 

                      =
1

2
(𝑣 ⋅ 𝑣 + 𝑤 ⋅ 𝑤 − (𝑣 ⋅ 𝑣 − 𝑤 ⋅ 𝑣 − 𝑣 ⋅ 𝑤 + 𝑤 ⋅ 𝑤) 

 

                                   = 1

2
(2𝑣 ⋅ 𝑤). 

 

       ‖ 𝑣‖ ‖𝑤‖ cos 𝜃 = 𝑣 ⋅ 𝑤. 

 

Notice this means that given 2 nonzero vectors 𝑣, 𝑤 ∈ ℝ𝑛 that 𝑣 and 𝑤 are 

perpendicular if and only if  < 𝑣, 𝑤 >=  𝑣 ∙ 𝑤 = 0.  
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 We can use this formula to  find the angle between 2 vectors.  

Ex.    Find the angle between 𝑣 =< 2, 0 > and 𝑤 =< 3, 3 >. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos 𝜃 =  
𝑣 ⋅ 𝑤

‖ 𝑣‖ ‖𝑤‖
=

< 2, 0 > ⋅< 3, 3 >

(√22 + 02)(√32 + 32
 

 

cos 𝜃 =  
6

2√18
=

6

6√2
=

√2

2
 

 

       𝜃 =
𝜋

4
 . 

< 3,3 > 

< 2,0 > 
𝑣 

𝑤 

 

𝜃 
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Def.  Let 𝑉 be an inner product space .  Vectors 𝑣, 𝑤 are orthogonal (or 

perpendicular) if < 𝑣, 𝑤 > = 0.  A subset 𝑆 of 𝑉 is said to be orthogonal if any 

two distinct vectors of 𝑆 are orthogonal.   

 

Def.  A vector 𝑣 ∈ 𝑉 is a unit vector if ‖𝑣‖ = 1.  

 

Def.  A subset 𝑆 of 𝑉 is called orthonormal if 𝑆 is orthogonal and contains only 

unit vectors. 

 

Notice that given any nonzero vector 𝑣 ∈ 𝑉 we can create a unit vector in the 

same direction as 𝑣 by  𝑢 =
𝑣

‖𝑣‖
 . 

 

Ex.  Let 𝑣1 =< 1,2,2 > ,    𝑣2 =< 0, −1,1 >,    and   𝑣3 =< −4,1,1 > be vectors in 

       ℝ3 with the standard inner product.  Show that 𝑆 = {𝑣1, 𝑣2, 𝑣3} is orthogonal.  

       Find vectors 𝑆′ = {𝑢1, 𝑢2, 𝑢3} that are orthonormal.  

 

     < 𝑣1, 𝑣2 > =< 1,2,2 >∙< 0, −1,1 >= 0 − 2 + 2 = 0 

     < 𝑣2, 𝑣3 > =< 0, −1,1 >∙< −4,1,1 >= 0 − 1 + 1 = 0 

      < 𝑣3, 𝑣1 > =< −4,1,1 >∙< 1,2,2 >= −4 + 2 + 2 = 0.   

        Thus 𝑆 is orthogonal. 

        However 𝑆 is not orthonormal since: 

        ‖𝑣1‖ = √12 + 22 + 22 = √9 = 3 ≠ 1 

        ‖𝑣2‖ = √02 + (−1)2 + 12 = √2 ≠ 1 

        ‖𝑣3‖ = √(−4)2 + 12 + 12 = √18 ≠ 1.  

 

However, if  𝑢1 =
1

3
< 1,2,2 >,      𝑢2 =

1

√2
< 0, −1,1 >,    𝑢3 =

1

√18
< −4,1,1 > 

        then 𝑆′ = {𝑢1, 𝑢2, 𝑢3} is orthonormal. 


