Solving Systems of Linear Equations Using Linear Transformations-HW Problems

In problems 1-5 find a basis for the solution set of the homogeneous linear systems.

1.
$$x_1 + 2x_2 = 0$$
$$-2x_1 - 4x_2 = 0$$

2.
$$x_1 + x_2 + x_3 = 0$$

 $x_1 - x_2 - x_3 = 0$

3.
$$x_1 + 3x_2 + x_3 + x_4 = 0$$

 $2x_1 - 2x_2 + x_3 + 2x_4 = 0$
 $x_1 - 5x_2 + x_4 = 0$

4.
$$x_1 + x_2 + x_3 + x_4 = 0$$

5.
$$x_1 + 2x_2 - 2x_3 + x_4 = 0$$
$$x_1 - 2x_2 + 2x_3 + x_4 = 0$$

For problems 6-10 use your solutions to problems 1-5 to find all solutions to the following linear systems.

6.
$$x_1 + 2x_2 = 5$$
$$-2x_1 - 4x_2 = -10$$

7.
$$x_1 + x_2 + x_3 = 3$$

 $x_1 - x_2 - x_3 = -1$

8.
$$x_1 + 3x_2 + x_3 + x_4 = 1$$

 $2x_1 - 2x_2 + x_3 + 2x_4 = -3$
 $x_1 - 5x_2 + x_4 = -4$

9.
$$x_1 + x_2 + x_3 + x_4 = 3$$

10.
$$x_1 + 2x_2 - 2x_3 + x_4 = -2$$

 $x_1 - 2x_2 + 2x_3 + x_4 = 10$

For problems 11 and 12 write the system as Ax = b and solve the system by finding A^{-1} .

11.
$$2x_1 + 5x_2 = 3$$
$$x_1 + 3x_2 = 2$$

12.
$$x_1 + x_3 = 1$$

 $3x_1 + 3x_2 + 4x_3 = 2$
 $2x_1 + 2x_2 + 3x_3 = 1$

- 13. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x_1, x_2, x_3) = (x_1 + x_3, 2x_1 x_2)$. Find $T^{-1}(8, 1)$.
- 14. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, \ x_1 x_2 + 3x_3, \ x_1 + 2x_3).$
- a. Is < 6, 4, $5 > \in R(T)$?
- b. Is < -4, 2, $3 > \in R(T)$?
- 15. Suppose that Ax = b is a system of n equations in n unknowns. Prove that if Rank(A) = n then Ax = b has a unique solution for every $b \in \mathbb{R}^n$.