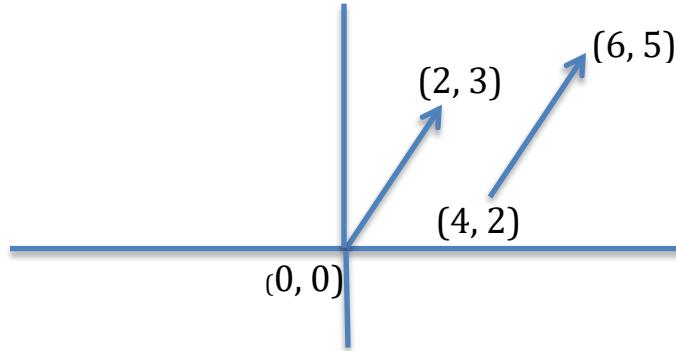


Vector Spaces

Vectors in \mathbb{R}^2

A nonzero vector in \mathbb{R}^2 can be represented by a directed line segment. So a vector is something with a magnitude, how long the vector is, and a direction.

Ex. We can think of the vector $v = \langle 2, 3 \rangle$ as a line segment starting at $(0, 0)$ (or any other point in the plane) and ending 2 units to the right and 3 units up.



The length of any vector $v = \langle a, b \rangle$ in \mathbb{R}^2 is $|v| = \sqrt{a^2 + b^2}$

Ex. The length of $v = \langle 2, 3 \rangle$ is:

$$|v| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$$

We can multiply any vector in \mathbb{R}^2 by a real number α , called a scalar, by

$$\begin{aligned} v &= \langle a, b \rangle \\ \alpha v &= \alpha \langle a, b \rangle = \langle \alpha a, \alpha b \rangle \end{aligned}$$

Ex. If $v = \langle -3, 2 \rangle$

$$3v = 3 \langle -3, 2 \rangle = \langle -9, 6 \rangle$$

$$-2v = -2 \langle -3, 2 \rangle = \langle 6, -4 \rangle$$

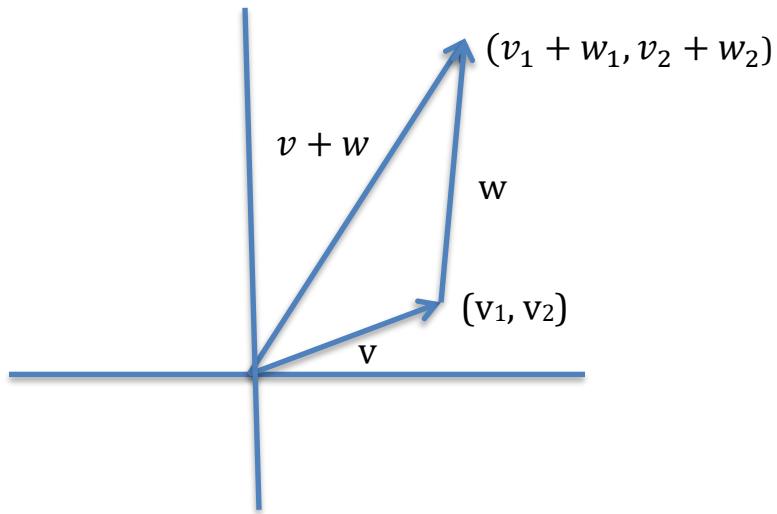
If we have 2 vectors:

$$v = \langle v_1, v_2 \rangle$$

$$w = \langle w_1, w_2 \rangle$$

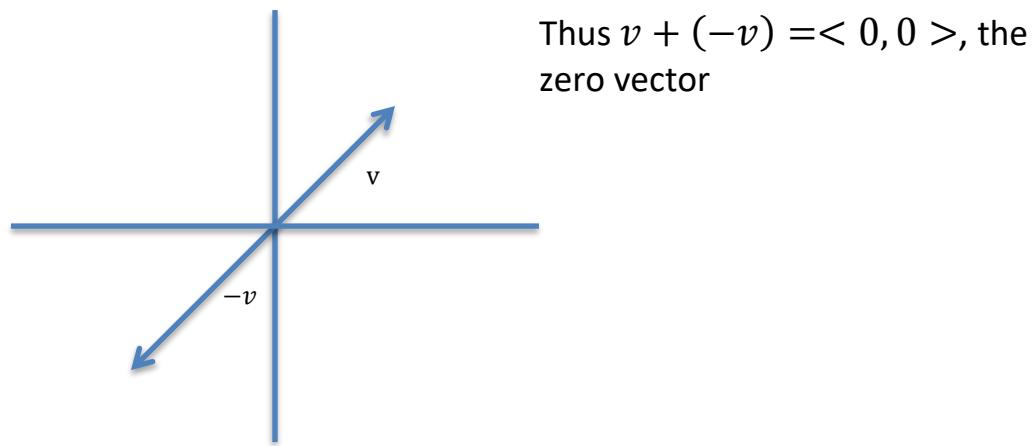
$$\text{then } v + w = \langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \langle v_1 + w_1, v_2 + w_2 \rangle.$$

Geometrically, $v + w$ is the vector starting at $(0,0)$ and ending at $(v_1 + w_1, v_2 + w_2)$.



If $v = \langle a, b \rangle$ then $-v = \langle -a, -b \rangle$.

$-v$ is the same length as v but points in the opposite direction.



If w is any vector in \mathbb{R}^2 then $w + \langle 0, 0 \rangle = w$.

Vector Space Axioms

Def. Let V be a set (like all vectors in \mathbb{R}^2) on which the operations of addition and scalar multiplication (i.e. multiplying by a real number) are defined. By this we mean if $v, w \in V$ then $v + w \in V$ and $\alpha v \in V$ where α is any real number. The set V together with the operations of addition and scalar multiplication, is said to form a **Vector Space** if the following axioms hold:

A1. $v + w = w + v$ for all $v, w \in V$

A2. $(v + w) + u = v + (w + u)$ for all $u, v, w \in V$

A3. There exists an element 0 in V such that $v + 0 = v$ for every $v \in V$, (0 is the zero element)

A4. For each $v \in V$ there exists an element $-v \in V$ such that

$$v + (-v) = 0$$

A5 $1 \cdot v = v$ for all $v \in V$

A6. $(\alpha\beta)v = \alpha(\beta v)$ for any scalars $\alpha, \beta \in \mathbb{R}$ and any $v \in V$

A7. $\alpha(v + w) = \alpha v + \alpha w$ for each scalar $\alpha \in \mathbb{R}$ and any $v, w \in V$

A8. $(\alpha + \beta)v = \alpha v + \beta v$ for any scalars of $\alpha, \beta \in \mathbb{R}$ and any $v \in V$.

The elements of \mathbb{R} are called **scalars**.

The elements of V are called **vectors**.

Ex. \mathbb{R}^2 is a vector space with (the standard)

$$\begin{aligned} < v_1, v_2 > + < w_1, w_2 > &= < v_1 + w_1, v_2 + w_2 > \text{ and} \\ \alpha < v_1, v_2 > &= < \alpha v_1, \alpha v_2 >. \end{aligned}$$

To prove this we need to show \mathbb{R}^2 is closed under addition and scalar multiplication and verify the 8 axioms.

Let $v = < v_1, v_2 >$, $w = < w_1, w_2 >$, $u = < u_1, u_2 >$ be any vectors in \mathbb{R}^2 and $\alpha, \beta \in \mathbb{R}$.

\mathbb{R}^2 is closed under addition because if $v, w \in \mathbb{R}^2$, then:

$$< v_1, v_2 > + < w_1, w_2 > = < v_1 + w_1, v_2 + w_2 > \in \mathbb{R}^2.$$

\mathbb{R}^2 is closed under scalar multiplication because if $v \in \mathbb{R}^2$, then:

$$\alpha < v_1, v_2 > = < \alpha v_1, \alpha v_2 > \in \mathbb{R}^2 \text{ for any } \alpha \in \mathbb{R}.$$

$$\begin{aligned}
 A1. \quad & \langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \langle v_1 + w_1, v_2 + w_2 \rangle \\
 & = \langle w_1 + v_1, w_2 + v_2 \rangle \\
 & = \langle w_1, w_2 \rangle + \langle v_1, v_2 \rangle
 \end{aligned}$$

$$\begin{aligned}
 A2. \quad & (\langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle) + \langle u_1, u_2 \rangle \\
 & = \langle v_1 + w_1, v_2 + w_2 \rangle + \langle u_1, u_2 \rangle \\
 & = \langle v_1 + w_1 + u_1, v_2 + w_2 + u_2 \rangle \\
 & = \langle v_1, v_2 \rangle + \langle w_1 + u_1, w_2 + u_2 \rangle \\
 & = \langle v_1, v_2 \rangle + (\langle w_1, w_2 \rangle + \langle u_1, u_2 \rangle)
 \end{aligned}$$

$$A3. \quad \vec{0} = \langle 0, 0 \rangle; \quad \langle v_1, v_2 \rangle + \langle 0, 0 \rangle = \langle v_1, v_2 \rangle$$

$$\begin{aligned}
 A4. \quad & -\langle v_1, v_2 \rangle = \langle -v_1, -v_2 \rangle \\
 \text{so } & \langle v_1, v_2 \rangle + \langle -v_1, -v_2 \rangle = \langle 0, 0 \rangle
 \end{aligned}$$

$$A5. \quad 1 \cdot \langle v_1, v_2 \rangle = \langle 1v_1, 1v_2 \rangle = \langle v_1, v_2 \rangle$$

$$\begin{aligned}
 A6. \quad (\alpha\beta) \langle v_1, v_2 \rangle & = \langle \alpha\beta v_1, \alpha\beta v_2 \rangle = \alpha(\beta \langle v_1, v_2 \rangle) \\
 & = \alpha(\beta \langle v_1, v_2 \rangle)
 \end{aligned}$$

$$\begin{aligned}
 A7. \quad \alpha(\langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle) & = \alpha \langle v_1 + w_1, v_2 + w_2 \rangle \\
 & = \langle \alpha(v_1 + w_1), \alpha(v_2 + w_2) \rangle \\
 & = \langle \alpha v_1 + \alpha w_1, \alpha v_2 + \alpha w_2 \rangle \\
 & = \langle \alpha v_1, \alpha v_2 \rangle + \langle \alpha w_1, \alpha w_2 \rangle \\
 & = \alpha \langle v_1, v_2 \rangle + \alpha \langle w_1, w_2 \rangle
 \end{aligned}$$

$$\begin{aligned}
 A8. \quad (\alpha + \beta) \langle v_1, v_2 \rangle & = \langle (\alpha + \beta)v_1, (\alpha + \beta)v_2 \rangle \\
 & = \langle \alpha v_1 + \beta v_1, \alpha v_2 + \beta v_2 \rangle \\
 & = \langle \alpha v_1, \alpha v_2 \rangle + \langle \beta v_1, \beta v_2 \rangle \\
 & = \alpha \langle v_1, v_2 \rangle + \beta \langle v_1, v_2 \rangle.
 \end{aligned}$$

So \mathbb{R}^2 is a vector space with this addition and scalar multiplication.

Ex. $V = \{< a, b > \in \mathbb{R}^2 \mid a \geq 0, b \geq 0\}$ is NOT a vector space with the standard addition and scalar multiplication.

To prove something is not a vector space we just need to show that either the set in question is not closed under addition or scalar multiplication, or one of the 8 axioms doesn't hold.

The first thing to check is whether

$v + w \in V$ whenever $v, w \in V$, and $\alpha v \in V$ for all $v \in V$ and $\alpha \in \mathbb{R}$.

In this case, $v + w \in V$ whenever $v, w \in V$, since:

$< a, b > + < c, d > = < a + c, b + d >$, and if $a, b, c, d \geq 0$ so are $a + c$ and $b + d$.

However, $\alpha v \notin V$ for all $v \in V$ and all $\alpha \in \mathbb{R}$. For example, if $\alpha = -1$ and $v = < 1, 2 > \in V$ then $\alpha v = < -1, -2 > \notin V$.

Ex. \mathbb{R}^n is a vector space with $v = < v_1, v_2, \dots, v_n >$, $w = < w_1, w_2, \dots, w_n >$ and $v + w = < v_1 + w_1, v_2 + w_2, \dots, v_n + w_n >$ and $\alpha v = \alpha < v_1, v_2, \dots, v_n > = < \alpha v_1, \alpha v_2, \dots, \alpha v_n >$.

The proof is exactly the same as the proof for \mathbb{R}^2 (we just have n components to our vectors instead of 2).

A real $m \times n$ matrix (m rows, n columns) is an array of the form

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

where $a_{ij} \in \mathbb{R}$ for $i = 1, \dots, n$; $j = 1, \dots, m$.

Ex. $A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 5 & 2 \\ -3 & 2 & 1 \\ 4 & 3 & 5 \end{bmatrix}$ is a 4×3 matrix. The third row is $-3, 2, 1$ and the second column is $-1, 5, 2, 3$.

Ex. The usual addition and scalar multiplication for matrices works as follows:

$$\begin{bmatrix} 2 & -1 & 3 \\ 0 & 3 & 2 \end{bmatrix} + \begin{bmatrix} -1 & -2 & 5 \\ 3 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 8 \\ 3 & 2 & 3 \end{bmatrix}$$

$$4 \begin{bmatrix} -1 & -2 & 5 \\ 3 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -4 & -8 & 20 \\ 12 & -4 & 4 \end{bmatrix}.$$

If $m = n$ we say that A is a square matrix.

Ex. Show the set $V = M_{m \times n}(\mathbb{R})$ = all $m \times n$ matrices with real entries with the usual matrix addition and scalar multiplication is a vector space.

First we show that V is closed under addition and scalar multiplication.

If $A, B \in V$ then $A + B$ is also an $m \times n$ matrix with real entries, so $A + B \in V$.

If $A \in V$ then $, \alpha \in \mathbb{R}$, is also an $m \times n$ matrix with real entries, so $\alpha A \in V$.

A1. $A + B = B + A$ for all $A, B \in V$ (matrix addition is commutative)

A2. $(A + B) + C = A + (B + C)$ for all $A, B, C \in V$ (matrix addition is associative)

A3. $0 =$ the zero matrix (zeros in all entries), so $A + 0 = A$ for all $A \in V$

A4. For each $A \in V$, $-A = (-1)A$ has the property that $A + (-A) = 0$

A5. $1 \cdot A = A$ for all $A \in V$ (property of scalar multiplication of matrices).

A6. $(\alpha\beta)A = \alpha(\beta A)$ for all $A \in V, \alpha, \beta \in \mathbb{R}$ (property of scalar multiplication of matrices)

A7. $\alpha(A + B) = \alpha A + \alpha B$ for all $A, B \in V$ and $\alpha \in \mathbb{R}$ (distributive property of scalar multiplication of matrices)

A8. $(\alpha + \beta)A = \alpha A + \beta A$ for all $A \in V$ and $\alpha, \beta \in \mathbb{R}$ (another distributive property of scalar multiplication of matrices).

So $M_{m \times n}$ is a vector space.

Ex. Let $V = P_2(\mathbb{R}) = \{all\ polynomials\ of\ degree\ \leq 2,\ real\ coefficients\}.$

V is a vector space with $p(x) = a_0 + a_1x + a_2x^2$

and $q(x) = b_0 + b_1x + b_2x^2$ any element of V ,

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

and $\alpha p(x) = \alpha a_0 + \alpha a_1x + \alpha a_2x^2.$

$P_2(\mathbb{R})$ is closed under addition because:

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 \in P_2(\mathbb{R})$$

$P_2(\mathbb{R})$ is closed under scalar multiplication because:

$$\alpha p(x) = \alpha a_0 + \alpha a_1x + \alpha a_2x^2 \in P_2(\mathbb{R}) \text{ for any } \alpha \in \mathbb{R}.$$

$$\text{A1. } p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 \\ = b_0 + b_1x + b_2x^2 + a_0 + a_1x + a_2x^2 = q(x) + p(x)$$

$$\text{A2. } (p(x) + q(x)) + r(x) \\ = (a_0 + a_1x + a_2x^2 + b_0 + b_1x + b_2x^2) + c_0 + c_1x + c_2x^2 \\ = (a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2 + c_0 + c_1x + c_2x^2) \\ = p(x) + (q(x) + r(x))$$

A3. $0 =$ the zero polynomial i.e. a_0, a_1, a_2 are all 0

$$q(x) + 0 = b_0 + b_1x + b_2x^2 + 0 = b_0 + b_1x + b_2x^2 = q(x)$$

A4. $-p(x) = -a_0 - a_1x - a_2x^2$ so:

$$p(x) + (-p(x)) = (a_0 + a_1x + a_2x^2) + (-a_0 - a_1x - a_2x^2) = 0$$

$$\text{A5. } 1 \cdot p(x) = 1(a_0 + a_1x + a_2x^2) = a_0 + a_1x + a_2x^2 = p(x)$$

$$\text{A6. } (\alpha\beta)p(x) = \alpha\beta(a_0 + a_1x + a_2x^2) = \alpha(\beta a_0 + \beta a_1x + \beta a_2x^2) \\ = \alpha(\beta p(x))$$

$$\text{A7. } \alpha(p(x) + q(x)) = \alpha((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2) \\ = (\alpha a_0 + \alpha b_0) + (\alpha a_1 + \alpha b_1)x + (\alpha a_2 + \alpha b_2)x^2 \\ = (\alpha a_0 + \alpha a_1x + \alpha a_2x^2) + (\alpha b_0 + \alpha b_1x + \alpha b_2x^2) \\ = \alpha p(x) + \alpha q(x)$$

$$\begin{aligned}
 A8. \quad (\alpha + \beta)p(x) &= (\alpha + \beta)(a_0 + a_1x + a_2x^2) \\
 &= (\alpha a_0 + \beta a_0) + (\alpha a_1 + \beta a_1)x + (\alpha a_2 + \beta a_2)x^2 = \alpha p(x) + \beta p(x).
 \end{aligned}$$

So V is a vector space.

In fact, $P_n(\mathbb{R})$, polynomials with real coefficients of degree $\leq n$, n a positive integer, forms a vector space.

Ex. Let $V = \{ \text{polynomials with real coefficients} \mid f(0) = 0 \}$.

Show that V is a vector space with the usual addition and scalar multiplication (as in the previous example).

First show that V is closed under addition.

If $f(x), g(x) \in V$ then $f(0) = g(0) = 0$.

Then $h(x) = f(x) + g(x)$ has $h(0) = f(0) + g(0) = 0$.

Since the sum of two polynomials is also a polynomial, $h(x) \in V$.

Now show that V is closed under scalar multiplication.

If $f(x) \in V$ and $c \in \mathbb{R}$ then let $h(x) = cf(x)$.

$h(0) = cf(0) = 0$ and the product of a real number and a polynomial is again a polynomial. Thus $h(x) \in V$.

So V is closed under addition and scalar multiplication.

$f(x) = 0 \in V$ is the additive identity and since $f(0) = 0$ and $f(x)$ is a polynomial with real coefficients.

If $f(x) \in V$, then the additive inverse, $-f(x) \in V$, since $-f(0) = 0$ and -1 times a polynomial is again a polynomial and $f(x) + (-f(x)) = 0$.

V satisfies axioms 1 – 8 as in the previous example, so V is a vector space.

Let $\mathfrak{J} = \{functions\ from\ \mathbb{R}\ to\ \mathbb{R}\}$. So the “vectors” in \mathfrak{J} are functions from \mathbb{R} to \mathbb{R} (e.g., $f(x) = x^2$, $g(x) = \cos x$, etc.).

Vector addition is just the usual addition of functions. For example, $f(x) = x^2 - 3x$, $g(x) = 2x^2 + 1$ are in \mathfrak{J} . $f(x) + g(x) = 3x^2 - 3x + 1$.

Scalar multiplication is defined as the usual multiplication of a constant times a function. For example, $f(x) = x^2 - 3x \in \mathfrak{J}$, $4 \in \mathbb{R}$, $4f(x) = 4x^2 - 12x$.

Ex. Show that $\mathfrak{J} = \{functions\ from\ \mathbb{R}\ to\ \mathbb{R}\}$ with the usual addition and scalar multiplication is a vector space.

\mathfrak{J} is closed under addition since if $f(x), g(x) \in \mathfrak{J}$ then $f(x) + g(x) \in \mathfrak{J}$ because the sum of two functions from \mathbb{R} to \mathbb{R} is again a function from \mathbb{R} to \mathbb{R} .

\mathfrak{J} is closed under scalar multiplication because a constant multiple of a function from \mathbb{R} to \mathbb{R} is a function from \mathbb{R} to \mathbb{R} .

The zero vector in \mathfrak{J} is the function $f(x) = 0$.

If $f(x) \in \mathfrak{J}$ then its additive inverse $-f(x) \in \mathfrak{J}$.

Since axioms 1-8 are satisfied by real numbers they are also satisfied by \mathfrak{J} with the usual addition and scalar multiplication of functions.

Thus \mathfrak{J} is a vector space.

Ex. Let $V = \{ \text{polynomials with real coefficients} \mid f(0) = 1 \}$ with the usual addition and scalar multiplication for functions. Show that V is not a vector space.

Notice that V is not closed under addition or scalar multiplication since if $f(x), g(x) \in V$ then $h(x) = f(x) + g(x) \notin V$ since $h(0) = f(0) + g(0) = 1 + 1 = 2$.

$$h(x) = 3(f(x)) \text{ then } h(0) = 3(f(0)) = 3.$$

In addition, there is no additive identity (i.e. a zero vector) since if $g(x)$ is the 0 vector then $f(x) + g(x) = f(x)$. But then $g(0) = 0$. Thus $g(x) \notin V$.

There is no additive inverse as well. If $f(x) \in V$ and $g(x)$ is the additive inverse of $f(x)$, then $f(x) + g(x) = 0$. But then $g(x) = -f(x)$ and $g(0) = -f(0) = -1$. Thus $g(x) \notin V$.

Ex. Let $V = \mathbb{R}^2$ and define vector addition by

$$\langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle = \langle a_1 - b_1, a_2 + b_2 \rangle$$

and scalar multiplication by $c \langle a_1, a_2 \rangle = \langle ca_1, ca_2 \rangle$. Show that V is not a vector space.

It's straightforward to see that V is closed under addition and scalar multiplication. However, several of the axioms of vector spaces don't hold.

Axiom 1: $v + w = w + v$.

If we let $v = \langle a_1, a_2 \rangle$, $w = \langle b_1, b_2 \rangle$, then

$$v + w = \langle a_1 - b_1, a_2 + b_2 \rangle$$

$$w + v = \langle b_1 - a_1, b_2 + a_2 \rangle$$

and $a_1 - b_1 \neq b_1 - a_1$ for all $a_1, b_1 \in \mathbb{R}^2$. So $v + w \neq w + v$.

Axiom 2: $(v + w) + z = v + (w + z)$.

If we let $v = \langle a_1, a_2 \rangle$, $w = \langle b_1, b_2 \rangle$, $z = \langle d_1, d_2 \rangle$ then

$$\begin{aligned}(v + w) + z &= \langle a_1 - b_1, a_2 + b_2 \rangle + \langle d_1, d_2 \rangle \\ &= \langle a_1 - b_1 - d_1, a_2 + b_2 + d_2 \rangle\end{aligned}$$

$$\begin{aligned}v + (w + z) &= \langle a_1, a_2 \rangle + \langle b_1 - d_1, b_2 + d_2 \rangle \\ &= \langle a_1 - (b_1 - d_1), a_2 + (b_2 + d_2) \rangle \\ &= \langle a_1 - b_1 + d_1, a_2 + b_2 + d_2 \rangle\end{aligned}$$

So $(v + w) + z \neq v + (w + z)$.

Axiom 8: If $a, b \in \mathbb{R}$ and $v \in V$ then $(a + b)v = av + bv$.

If we let $v = \langle a_1, a_2 \rangle$ then

$$(a + b)v = (a + b) \langle a_1, a_2 \rangle = \langle (a + b)a_1, (a + b)a_2 \rangle$$

$$\begin{aligned}av + bv &= a \langle a_1, a_2 \rangle + b \langle a_1, a_2 \rangle \\ &= \langle aa_1, aa_2 \rangle + \langle ba_1, ba_2 \rangle \\ &= \langle aa_1 - ba_1, aa_2 + ba_2 \rangle \\ &= \langle (a - b)a_1, (a + b)a_2 \rangle\end{aligned}$$

So $(a + b)v \neq av + bv$.

It is possible to have a nonstandard definition of vector addition and scalar multiplication on $V = \mathbb{R}^2$ for which V is a vector space. One example is:

If $v = \langle a_1, a_2 \rangle$, $w = \langle b_1, b_2 \rangle$ then

$$v + w = \langle a_1 + b_1 - 1, a_2 + b_2 \rangle \quad \text{and} \quad cv = \langle ca_1 - c + 1, ca_2 \rangle.$$

However, notice that in this case the zero vector is $\langle 1, 0 \rangle$ not $\langle 0, 0 \rangle$ and the additive inverse of $\langle a_1, a_2 \rangle$ is $\langle 2 - a_1, -a_2 \rangle$ not $\langle -a_1, -a_2 \rangle$.

Theorem (cancellation law for vector addition): If v, w , and z are vectors in a vector space V and $v + z = w + z$ then $v = w$.

Proof: There exists a vector $u \in V$ such that $z + u = 0$. Thus

$$\begin{aligned} v &= v + 0 \\ &= v + (z + u) \\ &= (v + z) + u \\ &= (w + z) + u \\ &= w + (z + u) \\ &= w + 0 \\ &= w. \end{aligned}$$

Corollary: The zero vector is unique.

Proof: Suppose v and w are both zero vectors. Then

$$\begin{aligned} z + v &= z \\ z + w &= z \end{aligned}$$

Thus: $z + v = z + w$.

By the cancellation law: $v = w$.

Corollary: If $v \in V$ then its additive inverse is unique.

Proof: Suppose w_1, w_2 are both additive inverses of $v \in V$, then

$$\begin{aligned} v + w_1 &= 0 \\ v + w_2 &= 0. \end{aligned}$$

Thus: $v + w_1 = v + w_2$.

By the cancellation law: $w_1 = w_2$.

Ex. Show $V = \{ \langle a, 3 \rangle \in \mathbb{R}^2 \mid a \in \mathbb{R} \}$ with:

$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$ and $\alpha \langle a, b \rangle = \langle \alpha a, \alpha b \rangle$
is not a vector space.

First check if V is closed under addition and scalar multiplication.

$$\begin{aligned} v, w \in V, \quad v &= \langle v_1, 3 \rangle, \quad w = \langle w_1, 3 \rangle \\ v + w &= \langle v_1 + w_1, 6 \rangle \notin V \end{aligned}$$

So V is not closed under addition.

Also if $\alpha = 3$, for example,

$$\alpha v = 3 \langle v_1, 3 \rangle = \langle 3v_1, 9 \rangle \notin V$$

So V is not closed under scalar multiplication either.

Ex. Let $V = \{(x, y) \in \mathbb{R}^2 \mid y = 3x\}$. Show that V is a vector space with the usual vector addition and scalar multiplication.

V is closed under addition since if $v, w \in V$ then for some $x_1, x_2 \in \mathbb{R}$

$$\begin{aligned} v &= \langle x_1, 3x_1 \rangle \\ w &= \langle x_2, 3x_2 \rangle \text{ and} \\ v + w &= \langle x_1, 3x_1 \rangle + \langle x_2, 3x_2 \rangle = \langle x_1 + x_2, 3(x_1 + x_2) \rangle \in V. \end{aligned}$$

V is closed under scalar multiplication since if $v \in V$ and $c \in \mathbb{R}$ then

$$\begin{aligned} v &= \langle x_1, 3x_1 \rangle \\ cv &= c \langle x_1, 3x_1 \rangle \\ &= \langle cx_1, 3cx_1 \rangle \in V. \end{aligned}$$

The zero vector in V is: $\langle 0, 0 \rangle = \langle 0, 3(0) \rangle \in V$.

V contains all additive inverses since if $v \in V$ and $v = \langle x_1, 3x_1 \rangle$ then $w = \langle -x_1, 3(-x_1) \rangle \in V$ is its additive inverse since:

$$\begin{aligned} v + w &= \langle x_1, 3x_1 \rangle + \langle -x_1, 3(-x_1) \rangle \\ &= \langle 0, 0 \rangle. \end{aligned}$$

It's straightforward to check that the other axioms hold.

Ex. Show that $V = \{(x, y) \in \mathbb{R}^2 \mid y = 3x + 1\}$ is not a vector space under the usual vector addition and scalar multiplication.

V is not closed under addition since if $v, w \in V$ and $v = \langle x_1, 3x_1 + 1 \rangle$ $w = \langle x_2, 3x_2 + 1 \rangle$ then

$$\begin{aligned} v + w &= \langle x_1, 3x_1 + 1 \rangle + \langle x_2, 3x_2 + 1 \rangle \\ &= \langle x_1 + x_2, 3(x_1 + x_2) + 2 \rangle \notin V. \end{aligned}$$

V is also not closed under scalar multiplication since if $c \in \mathbb{R}$, $c \neq 1$ then

$$\begin{aligned} cv &= \langle cx_1, c(3x_1 + 1) \rangle \\ &= \langle cx_1, 3(cx_1) + c \rangle \neq \langle cx_1, 3(cx_1) + 1 \rangle \end{aligned}$$

So $cv \notin V$.

The zero vector is not in V . If w is the zero vector then $w + v = v$ for all $v \in V$.

But by usual vector addition that means $w = \langle 0, 0 \rangle$.

However, $\langle 0, 0 \rangle \notin V$ since $\langle 0, 0 \rangle \neq \langle 0, 3(0) + 1 \rangle = \langle 0, 1 \rangle$.

Additive inverses are not in V .

If $v \in V$ then w is an additive inverse of v if $v + w = \langle 0, 0 \rangle$

Thus if $v = \langle x_1, 3x_1 + 1 \rangle$,

then $w = \langle -x_1, 3(-x_1) - 1 \rangle = \langle -x_1, -3x_1 - 1 \rangle$

since $\langle x_1, 3x_1 + 1 \rangle + \langle -x_1, -3x_1 - 1 \rangle = \langle 0, 0 \rangle$.

But $\langle -x_1, -3x_1 - 1 \rangle \notin V$.

Ex. Let $V = \{2 \times 2 \text{ matrices, } A, \text{ where } \det(A) = 0\}$

Let the addition and scalar multiplication be the usual matrix operations.

Show V is not a vector space.

We know V is closed under scalar multiplication because
 $\det(\alpha A) = \alpha^2 \det(A)$, since A is 2×2 , and $\det(A) = 0$,
 $\alpha^2 \det(A) = 0$.

However, $\det(A + B)$ is not necessarily 0, if $\det(A)$ and $\det(B) = 0$.

$$\text{Let } A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\det(A) = 0, \det(B) = 0 \text{ but } \det(A + B) = \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \neq 0.$$

So V is not closed under addition.