Riemannian Metrics

Def. Let M be a smooth manifold. A Riemannian metric on M is a

symmetric bilinear form at each point p € M that takes elements of
(X,Y) € T,M X T,M into areal number g(X,Y) and

g(X,X) > 0if X # 0 (i.e. it's positive definite).

Def. A smooth manifold, M, together with a Riemannian metric, g, is called a
Riemannian manifold, (M, g).

Ex. fM =R?andg = ((1) (1)), then g(X,Y) is the standard Euclidean

inner product on R?.

X =(a,ay); Y = (B1,52)

<X, Y>=gX,Y)=(a1 ayz) ((1) (1)) (g;) =a1f1 + ap; .

However, if we let g be represented by g = (i é) we would get a

different inner product on R?:

<X,Y>=gKXY)= (0 az)(i é)(g;)

=20, + a1 8, + az By + 3a, ;.

Def. Let (M, g) be a Riemannian manifold. Suppose that X and Y are

vectors in TpM.

1. The length of X, denoted || X||, is defined as || X|| = /g(X, X)

XY
2. The angle O between X and Y is defined by cos 8 = _II%((II ”y)”

3. X andY are called orthogonal if g(X,Y) = 0.



Two Riemannian manifolds are considered the same if they have the same metric.

Def. Let M and N be two Riemannian manifolds. A diffeomorphism f: M — N
is called an isometry if for all p € M the following holds:

<X,Y >,=<df,(X),df,(Y) >¢p for X,Y € T, M.

Two Riemannian manifolds are called isometric if there exists an isometry
between them.

-
Given a parametrization of a manifold @, there is a Riemannian metric

associated with E)) We call this the metric induced by 3

Ex. Let ®(w,v) = (u, v, u? + v2) be a parametrization of a surface S.
Find the metric induce by 5

At (u,v) = (1,2), Let X € T(1,25)S begivenby < 2,—3 >, i.e,
X =2d,(1,2) —3®,(1,2). Find ||X]|?

@, =<1,0,2u >, ®,=<0,1,2v >

As we saw earlier, we can get the metric induced by E)) on S by:
gll =$u'6u == 1+4‘u2
912 = 921

l

= 4uv

» = 1+ 4v?

<

o, P
o, P

922 v

So the metric induced by 6 is given by:

g= (1 + 4u? Auv )
Auv 1+ 4v?

with respect to the basis {E’M,E)’,,} ={<1,0,2u>, <0,1,2v >}



XNl = Vg (X, X)

At (u,v) =(1,2), g= (553 187).

X =< 2,—3 >, sowe can write:

gX.X)=(@2 -3) (g 187) (_23) =(2 -3) (:;‘5}) = 77.
so lIXIl = V77

Notice that X is also a vector in Ty 5 5 R3. What is || X|| with respect to the

Euclidean metric in R3?

®,(1,2) =<1,0,2>and ®,(1,2) =< 0,1,4 >.

X=20,(1,2)-30,(1,2)=2<1,02>-3<0,1,4>
=<2,-3,—-8>.

In R3 the Euclidean metric is:

1 0 O 2
gX,Xx)=@2 -3 —8)(0 1 0)(—3)
0 0 1/ \-8

=<2,-3,-8>:<2,-3,-8>=4+9+64=77

So [|X[lg = V77 (the same as before!).



The length of a vector using the induced metric will always be the same as the
length from the Euclidean metric.

Let X = aESu + ,851,, and (g;;) the induced metric.
Then we have:

s =@ B (g go)(p)
= a?gy; + 2afg1; + B*gaa.

Now let’s use the Euclidean inner product to find || X||? :

X-X= (aa)u + ﬂasv) ' (aa)u + ,851])
= 2P, - D, + 2afD, - D, + 2D, - D,
= a’gq1 +2af gz + B g2
= g, X).

In fact, the above analysis leads us to why the calculation of the induced metric
gives us a matrix that is positive definite.

Suppose ®:U € R™ - M C R is a parametrization of an
n-dimensional manifold M, with local coordinates (xl, ..., X™). Theinduced

. ﬁ .
metric from @ is:

g = (9gij), whereg;; =® i D, ;.
We can represent any vector X € T, M by:
X = a15x1 + -+ anﬁxn

Thus we cansay if X # 0:
0<X- X—(ach L4 @, Pyn) (@ P14 -+ + a4, Dyn)
l] 1((1) cDxJ) (a a]
Zl] lgl](ala])



Ex. Let 542_ C R3 be the upper hemisphere and S2 € R3 be the lower
hemisphere parametrized by:

Show that f is an isometry.

Showing that f is a diffeomorphism is fairly straight-forward. Let’s show that:

< X,Y >p =< dfp(X)! dfp(y) >f(p)

Let’s start by calculating the metric on S_,z_ induced by ®:

-0 u - v
Py = (1'0"m> and - &y, = (“‘ﬁ)

v? 1—u?
1-u2—v2 — 1-ul—v2’




So given the vectors X, Y € TpSJZr
X = ala)u + 0(25)1] =< aq,ar >
Y = 1@y + Py, =< 1,2 >

1—v2 uv

_ _(a « 1—u?2—v?2  1-u2—12 (ﬂl)
<XY>,=gXY)= (01 a2) o 2 8,

1-u2—v2  1-u2—vp?

a1P1(1-v2)+ (a1 fa+az B uv+a, B (1-u?)
<XY >, = T Z_y2 )

Notice that:
P lofod(u,v) = U (—v,u,~VI—uZ —v2) = (—v,u) = (& 7).

So U=—v and UV = u.

Thus:

dfp(X) = ((1) _01) (al) = (—ag,a1) = —a; Wy + a1V

dfp(Y) = ((1) _01) (gl) = (=B2,B1) = —B.¥z + B1¥s.



Now we need the induced metric § on S? from V.

— u oy v
P =(1,0—-— | and ¥, =101,
1—12 -2 1 -2 —p2
2 2
_ - = u 1-v
=9, P, =1+
911 u° Ty 122 1-m2—2
_ _ — uv
= = lIJ— . lIJ— =
912 = 921 u'tv T2 2
=2 —2
_ S v 1—1
oz =¥ -V =1+ 12— 152"
1—p2 uv
_ 1-u2—p%  1-ul—v?
So i) =
(9:1) 057 1-u?
1-u2—v%* 1-u2—7?
1—p2 uv
dE(X) df(Y — (—an an| 1T 1wt
< fp( ), fp( )>f(p)_( 2 1) __ )
uv 1-u
1-u2—p% 1-u%—72

_ (1= 7%) + (—azfy — a1 fr) (WD) + ay 1 (1 — %)
B 1—u2 — 2 '




Butil = —vand?=uso 1—-u?—-9>2=1—u?>—-7v? and:

< dfp (X); dfp (Y) >f(p)
azB2(1-u?)—(azfr+a12)(—v)(W+aq f1(1-v2)

1-u?-v2

_ag B (1-v?)+(az B +as Br) uv) +ay fo(1-u?) <XV >
= = , p -

1-u2-v2

Thus f is an isometry.

Given a Riemannian metric on M, one can define new, non-isometric, metrics on
M by dividing an existing metric by a positive function. For example, we could
take the Euclidean metric on a unit ball in R™ and let:

1 . .
Yii =—(1_”x”2)2 and g j = 0 fori # j.
Or we could take the upper half plane in R? and let:

1
giizﬁ and gl]=0 fOFl:/:]

Proposition: Every smooth manifold, M, has a Riemannian metric.



