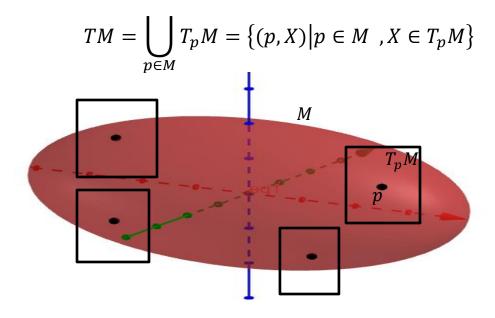
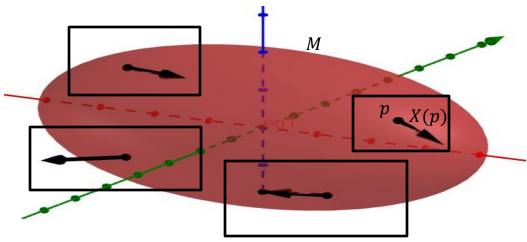
Vector Fields on Manifolds

Def. The **tangent bundle**, TM, of a manifold, M, is defined as:



Def. Let $\pi:TM\to M$ by $\pi(p,X)=p$. A **global section**, s, of TM is a map $s:M\to TM$ such that s is continuous and $\pi\circ s$ is the identity function on M.

Def. Let M be a differentiable manifold. A global section $s\colon M\to TM$ of TM is called a **vector field**. Thus, a vector field maps each point $p\in M$ into a vector $X(p)\in T_pM$ (also written X_p).



Let $\overrightarrow{\Phi}(x^1,\dots,x^n)$ be a parameterization of a manifold M. Then for each point $p\in M$, the tangent space T_pM has a basis $\left\{\frac{\partial \overrightarrow{\Phi}}{\partial x^1}\Big|_p,\dots,\frac{\partial \overrightarrow{\Phi}}{\partial x^n}\Big|_p\right\}$, which we can write as $\left\{\partial_1,\dots,\partial_n\right\}$ or $\left\{\frac{\partial}{\partial x^1},\dots,\frac{\partial}{\partial x^n}\right\}$. Thus we can express any vector field on M as:

$$\begin{split} X_p &= a^1(p)\partial_1 + \dots + a^n(p)\partial_n \; ; \; p \in M \\ &= \sum_{i=1}^n a^i(p) \frac{\partial}{\partial x^i} \end{split}$$

which we can represent in Einstein notation as $X = a^i \partial_i$.

Thus we can think of a vector field on M as a map, X, from the set of continuously differentiable functions on M, $C^1(M, \mathbb{R})$, into $C^1(M, \mathbb{R})$ by:

$$X(f)(p) = \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}(f)(p).$$

Ex. Let x^1, x^2 be local coordinates on the manifold, M, parameterized by $\overrightarrow{\Phi}(x^1, x^2) = (x^1, x^2, (x^1)^2 + (x^2)^2)$. Suppose $f \in C^1(M, \mathbb{R})$ is given by

$$f(x^1, x^2, (x^1)^2 + (x^2)^2) = ((x^1)^2 + (x^2)^2)^2 + (x^1)(x^2).$$

Let X be a vector field on M given by $X=(x^1+x^2)\partial_1-x^2\partial_2.$ Find X(f).

$$X(f) = ((x^{1} + x^{2})\partial_{1} - x^{2}\partial_{2})(f) = (x^{1} + x^{2})\frac{\partial}{\partial x^{1}}(f) - x^{2}\frac{\partial}{\partial x^{2}}(f)$$

$$= (x^{1} + x^{2})[2((x^{1})^{2} + (x^{2})^{2})(2x^{1}) + x^{2}]$$

$$-x^{2}[2((x^{1})^{2} + (x^{2})^{2})(2x^{2}) + x^{1}]$$

$$= 4((x^{1})^{2} + (x^{2})^{2})(x^{1}(x^{1} + x^{2}) - (x^{2})^{2}) + (x^{2})^{2}.$$

Ex. If $X = a^i \partial_i$, $Y = b^j \partial_j$, and $f \in C^2(M, \mathbb{R})$, find X(Yf).

$$X(Yf) = X(b^{j}\partial_{j}f) = a^{i}\partial_{i}(b^{j}\partial_{j}f)$$
$$= a^{i}(\partial_{i}b^{j})\partial_{j}f + a^{i}b^{j}\partial_{i}(\partial_{j}f).$$

In general $X(Yf) \neq Y(X(f))$.

Ex. Let
$$X=x^2\frac{\partial}{\partial x^1}-e^{x^1}\frac{\partial}{\partial x^2}$$
; $Y=x^1\frac{\partial}{\partial x^1}+x^2\frac{\partial}{\partial x^2}$ and $f(x^1,x^2)=(x^1)^2(x^2)$. Find $X(Yf)$ and $Y(Xf)$.

$$X(Yf) = \left(x^{2} \frac{\partial}{\partial x^{1}} - e^{x^{1}} \frac{\partial}{\partial x^{2}}\right) \left(x^{1} \frac{\partial f}{\partial x^{1}} + x^{2} \frac{\partial f}{\partial x^{2}}\right)$$

$$= \left(x^{2} \frac{\partial}{\partial x^{1}} - e^{x^{1}} \frac{\partial}{\partial x^{2}}\right) \left(2(x^{1})^{2}(x^{2}) + (x^{1})^{2}(x^{2})\right)$$

$$= \left(x^{2} \frac{\partial}{\partial x^{1}} - e^{x^{1}} \frac{\partial}{\partial x^{2}}\right) \left(3(x^{1})^{2}(x^{2})\right)$$

$$= x^{2} \left(6(x^{1})(x^{2})\right) - e^{x^{1}} \left(3(x^{1})^{2}\right)$$

$$= 6(x^{1})(x^{2})^{2} - 3e^{x^{1}}(x^{1})^{2}.$$

$$Y(Xf) = \left(x^{1} \frac{\partial}{\partial x^{1}} + x^{2} \frac{\partial}{\partial x^{2}}\right) \left(x^{2} \frac{\partial f}{\partial x^{1}} - e^{x^{1}} \frac{\partial f}{\partial x^{2}}\right)$$

$$= \left(x^{1} \frac{\partial}{\partial x^{1}} + x^{2} \frac{\partial}{\partial x^{2}}\right) \left(x^{2} (2x^{1})(x^{2}) - e^{x^{1}}(x^{1})^{2}\right)$$

$$= x^{1} \left[2(x^{2})^{2} - (x^{1})^{2} e^{x^{1}} - 2(x^{1}) e^{x^{1}}\right] + x^{2} \left[4(x^{1})(x^{2})\right]$$

$$= x^{1} \left[2(x^{2})^{2} - (x^{1})^{2} e^{x^{1}} - 2(x^{1}) e^{x^{1}}\right] + 4(x^{1})(x^{2})^{2}$$

$$= 6x^{1}(x^{2})^{2} - (x_{1})^{2}(2 + x^{1}) e^{x^{1}}.$$

In general, if X and Y are vector fields, XY is not a vector field because it has second order derivatives in the expression of it.

Proposition: If we let M be a differentiable manifold, and let X and Y be two vector fields of class C^1 on M, then XY-YX is a vector field.

Proof: Let
$$X=a^i\partial_i$$
 and $Y=b^j\partial_j;$ $i,j=1,...,n.$

$$(XY - YX) = a^{i}\partial_{i}(b^{j}\partial_{j}) - b^{j}\partial_{j}(a^{i}\partial_{i})$$

$$= a^{i}b^{j}\partial_{i}\partial_{j} + a^{i}(\partial_{i}b^{j})\partial_{j} - b^{j}a^{i}\partial_{j}\partial_{i} - b^{j}(\partial_{j}a^{i})\partial_{i}$$

$$= \left(a^{i}\left(\frac{\partial}{\partial x^{i}}b^{j}\right)\right)\frac{\partial}{\partial x^{j}} - \left(b^{j}\left(\frac{\partial}{\partial x^{j}}a^{i}\right)\right)\frac{\partial}{\partial x^{i}}$$

because
$$\partial_i \partial_j f = \frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i} = \partial_j \partial_i f$$
.

$$XY - YX = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(a^{i} \left(\frac{\partial}{\partial x^{i}} b^{j} \right) \right) \frac{\partial}{\partial x^{j}} - \sum_{i=1}^{n} \sum_{j=1}^{n} \left(b^{j} \left(\frac{\partial}{\partial x^{j}} a^{i} \right) \right) \frac{\partial}{\partial x^{i}}$$

In the second sum, interchange i and j:

$$XY - YX = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(a^{i} \left(\frac{\partial}{\partial x^{i}} b^{j} \right) \right) \frac{\partial}{\partial x^{j}} - \sum_{i=1}^{n} \sum_{j=1}^{n} \left(b^{i} \left(\frac{\partial}{\partial x^{i}} a^{j} \right) \right) \frac{\partial}{\partial x^{j}}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(a^{i} \left(\frac{\partial}{\partial x^{i}} b^{j} \right) - b^{i} \left(\frac{\partial}{\partial x^{i}} a^{j} \right) \right) \frac{\partial}{\partial x^{j}}$$
$$= \left(a^{i} \partial_{i} b^{j} - b^{i} \partial_{i} a^{j} \right) \partial_{j}.$$

Def: The Lie bracket of two vector fields is defined as

$$[X,Y] = XY - YX.$$

If $X = a^i \partial_i$, $Y = b^j \partial_j$, then $[X, Y] = (a^i \partial_i b^j - b^i \partial_i a^j) \partial_j$. If X and Y are class C^m , then [X, Y] is of class C^{m-1} .

Ex. Calculate [X,Y] for $X=x^2\frac{\partial}{\partial x^1}-e^{x^1}\frac{\partial}{\partial x^2}$ and $Y=x^1\frac{\partial}{\partial x^1}+x^2\frac{\partial}{\partial x^2}$ vector fields on \mathbb{R}^2 .

Let's calculate this in 2 ways - first by directly calculating XY - YX, and second by using the formula:

$$XY - YX = (a^i \partial_i b^j - b^i \partial_i a^j) \partial_i.$$

Direct calculation:

$$XY = \left(x^2 \frac{\partial}{\partial x^1} - e^{x^1} \frac{\partial}{\partial x^2}\right) \left(x^1 \frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^2}\right)$$

$$= \left(x^2 x^1 \frac{\partial^2}{\partial x^1 \partial x^1} + x^2 \frac{\partial}{\partial x^1}\right) + (x^2)^2 \frac{\partial^2}{\partial x^1 \partial x^2} - e^{x^1} (x^1) \frac{\partial^2}{\partial x^2 \partial x^1}$$

$$-e^{x^1} (x^2) \frac{\partial^2}{\partial x^2 \partial x^2} - e^{x^1} \frac{\partial}{\partial x^2}$$

$$YX = \left(x^{1} \frac{\partial}{\partial x^{1}} + x^{2} \frac{\partial}{\partial x^{2}}\right) \left(x^{2} \frac{\partial}{\partial x^{1}} - e^{x^{1}} \frac{\partial}{\partial x^{2}}\right)$$

$$= x^{1} (x^{2}) \frac{\partial^{2}}{\partial x^{1} \partial x^{1}} - x^{1} e^{x^{1}} \frac{\partial^{2}}{\partial x^{1} \partial x^{2}} - x^{1} e^{x^{1}} \frac{\partial}{\partial x^{2}} + (x^{2})^{2} \frac{\partial^{2}}{\partial x^{2} \partial x^{1}}$$

$$+ (x^{2}) \frac{\partial}{\partial x^{1}} - x^{2} e^{x^{1}} \frac{\partial^{2}}{\partial x^{1} \partial x^{2}}$$

$$XY - YX = x^2 \frac{\partial}{\partial x^1} - e^{x^1} \frac{\partial}{\partial x^2} - (-x^1 e^{x^1} \frac{\partial}{\partial x^2} + x^2 \frac{\partial}{\partial x^1})$$
$$= (x^1 e^{x^1} - e^{x^1}) \frac{\partial}{\partial x^2}.$$

Using the formula:
$$[X,Y]=\left(a^i\left(\partial_i b^j\right)-b^i\left(\partial_i a^j\right)\right)\partial_j$$

$$a^1=x^2 \ , \ a^2=-e^{x^1}$$

$$b^1=x^1 \ , \ b^2=x^2$$

$$[X,Y] = \sum_{i=1}^{2} \sum_{j=1}^{2} \left(a^{i} \left(\frac{\partial}{\partial x^{i}} b^{j} \right) - b^{i} \left(\frac{\partial}{\partial x^{i}} a^{j} \right) \right) \frac{\partial}{\partial x^{j}}$$

$$(i,j) \qquad \left(a^i \left(\frac{\partial}{\partial x^i} b^j\right) - b^i \left(\frac{\partial}{\partial x^i} a^j\right)\right) \frac{\partial}{\partial x^j}$$

$$(1,1) x^2 \frac{\partial}{\partial x^1}$$

$$-x^2 \frac{\partial}{\partial x^1}$$

$$(1,2) x^1 e^{x^1} \frac{\partial}{\partial x^2}$$

$$(2,2) -e^{x^1} \frac{\partial}{\partial x^2}$$

$$[X,Y] = \sum_{i=1}^{2} \sum_{j=1}^{2} \left(a^{i} \left(\frac{\partial}{\partial x^{i}} b^{j} \right) - b^{i} \left(\frac{\partial}{\partial x^{i}} a^{j} \right) \right) \frac{\partial}{\partial x^{j}}$$
$$= \left(x^{1} e^{x^{1}} - e^{x^{1}} \right) \frac{\partial}{\partial x^{2}}.$$

Whether we are calculating [X,Y] for vector fields on \mathbb{R}^n or on a k-dimensional manifold, M, the calculation is quite similar. We just have to realize for a manifold with local coordinates:

$$x: U \to \mathbb{R}^k$$
 , $\partial_j a^i = \frac{\partial (a^i \circ x^{-1})}{\partial x^j}$

where

$$x^{-1}$$
: $x(U) \to U \subseteq M$, $\partial_j = \frac{\partial x^{-1}}{\partial x^j}$.

Ex. Let
$$x^{-1}(x^1,x^2)=(x^1,x^2,(x^1)^2+(x^2)^2).$$
 Let $X=(x^1)^2\partial_1+(x^1)(x^2)\partial_2$ and $Y=2\partial_1+x^1\partial_2.$ Find $[X,Y].$

In this case, ∂_1 means $\frac{\partial x^{-1}}{\partial x^1}=(1,0,2x^1)$ and ∂_2 means $\frac{\partial x^{-1}}{\partial x^2}=(0,1,2x^2)$. So $\{\partial_1,\partial_2\}=\{(1,0,2x^1),(0,1,2x^2)\}$ spans the tangent space of M at $x^{-1}(x^1,x^2)$.

$$[X,Y] = \left(a^{i}\left(\partial_{i}b^{j}\right) - b^{j}\left(\partial_{i}a^{j}\right)\right)\partial_{j}$$

$$a^{1} = (x^{1})^{2}, \quad a^{2} = (x^{1})(x^{2})$$

$$b^{1} = 2, \quad b^{2} = x^{1}$$

$$\underbrace{\left(a^{i}\left(\frac{\partial}{\partial x^{i}}b^{j}\right)-b^{i}\left(\frac{\partial}{\partial x^{i}}a^{j}\right)\right)\frac{\partial}{\partial x^{j}}}$$

$$(1,1) -4(x^1)\partial_1$$

$$(2,1) 0$$

$$(1,2) ((x^1)^2 - 2x^2)\partial_2$$

$$-(x^1)^2 \partial_2$$

$$[X,Y] = -4(x^1)\partial_1 - 2(x^2)\partial_2.$$

Proposition: Let X,Y, and Z be differentiable vector fields on a differentiable manifold, M. Let $a,b \in \mathbb{R}$ and let f and g be differentiable functions $M \to \mathbb{R}$. Then:

- 1) [Y,X] = -[X,Y] (anticommutativity)
- 2) [aX + bY, Z] = a[X, Z] + b[Y, Z] (bilinearity, also holds for second input to bracket)
- 3) [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 (Jacobian identity)
- 4) [fX, gY] = fg[X, Y] + fX(g)Y gY(f)X.