Higher Order Tensors

Def. A set of components Tl-j, [,j =1,..,nissaid to be a tensor of

type (0, 2) at a point p € R™ if under a change of coordinates the
components transform according to:
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Suppose a surface, S © R?’, is given by:

5)(xlr-xz) = (fl(xllxz)J fZ(x11x2 )! fg(xl,xZ))_

A surface in R3 is called regular if ®,.1 X P,2 # 0 (This guarantees existence

_ 9o
of a tangent plane.) where CD = a0
Define:  g;; = E))xi . E))xj
(gi;) is called the metric tensor of ®.
Ex. Show that (g;;) isa (0, 2) tensor.
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So (gi;) isa (0, 2) tensor.

Ex. Let ®(x1,x2) = (&1, x2, (x1)2 + (x2)2).
a) Find g;; with respect to (x1,x?)
b) Let x* = %! cos X% and x? = X! sin X2. Find §; by using
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1+ 4(x1)2 Ax1x?
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b) Find g_kl
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For i1, k=1, [ =1so:
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g11 = (1 + 4(x1H)?)(cos x2)? + 2(4x*x?)(cos x?)(sin x?)
+ (1 + 4(x?)?)(sin x?)?

= (1 + 4(x* cos £%)?)(cos?(x?))
+ 8(x* cos %) (x! sin ¥2)(cos x?)(sin x¥?)
+ (1 + 4(x! sin x?)?)(sin?(x?))

=1+ 4(x1)>.

For homework, find g1, = g1, g22-



Def. Let (x1,...,x™) and (&1, ..., ¥™) be two coordinate systems in a

r+s - 1; B} ‘r‘ -
quantities '1} -

said to constitute the components of a tensor type (r, s) if under
coordinate transformation these quantities transform according to:

neighborhood of a point p € R™. Asetof n
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where all partial derivatives are at p. We define the rank of the
tensorasr + s.

Einstein Summation Notation:

1) In an expression involving the product of 2 tensors we sum from 1 ton
over any index that appears as both a subscript and a superscript.
Example:

A;jB’ means Y7_,A;iB) = Aj;B' + - Ay B"
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considered a subscript. Example:
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2) In a partial derivative —, the i is considered a superscript and the j is

3) In a given tensor if a subscript and superscript are the same, then it means
the sum from 1 to n over that subscript/superscript. Example:

n -
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This is called a contraction of two indices. However, this convention does
not apply to sums/differences of tensors. Example:

Al + B! or A' + B; does not indicate a sum from 1 to n over the index i.

If we contract two indices on an (7, $) tensor, then we get an
(r—1,s — 1) tensor.

Ex. Show thatif we contract on i = j fora (1, 2) tensor with components jlk,

then the resultis a (0, 1) tensor S, = T}.

Since T is a (1, 2) tensor we know (using Einstein notation):
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Setting I = J, we get:
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But —— = §3 (see Functions from R™ to R™), so we can write:
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So Sisa (0, 1) tensor.

Operations on Tensors:

1) If S and T are tensors of type (1, S), then:
a) W =S+T
b)B=aS ;a€eR
are tensors of type (7, 5).



2) If S is a tensor of type (7, s) and T is a tensor of type (t, 1), then
multiplying the components of S with the components of T gives a tensor

of type (r + t, s + u).

Ex. Suppose AL, B/ are components of contravariant vectors (i.e. (1,0)
tensors). Show that WY = A'B/ are the components of a (2, 0) tensor.

Since A' and B/ are contravariant vectors:
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or in Einstein notation:
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So WU are the components of a (2, 0) tensor.

Theorem: Suppose that Tij are the components of a (0, 2) tensor. If
the n X m matrix (T;;) is invertible on an open set U & R™
and the inverse is given by (T*/), then T are the
components of a (2, 0) tensor.



