Contravariant and Covariant Vectors

Given any point $\vec{a} \in \mathbb{R}^n$, let $\mathbb{R}^n_{\vec{a}}$ be the set of vectors in \mathbb{R}^n whose "tail" is at $\vec{a} \in \mathbb{R}^n$. That is, $\mathbb{R}^n_{\vec{a}}$ is the set of vectors tangent to \mathbb{R}^n at \vec{a} . $\mathbb{R}^n_{\vec{a}}$ is the **tangent space** of \mathbb{R}^n at $\vec{a} \in \mathbb{R}^n$.

If $f\colon U\subseteq\mathbb{R}^n\to\mathbb{R}^n$ is a differentiable map, then we know $Df(\vec{a})$ is a linear transformation from \mathbb{R}^n to \mathbb{R}^n . We can interpret this linear transformation as a map from $\mathbb{R}^n_{\vec{d}}$ to $\mathbb{R}^n_{f(\vec{a})}$ by:

$$Df(\vec{a}): \mathbb{R}^n_{\vec{a}} \to \mathbb{R}^n_{f(\vec{a})}$$

$$(Df(\vec{a}))(\vec{v}_{\vec{a}}) = (Df(\vec{a})(\vec{v}))_{f(\vec{a})}.$$

In particular, if $f\colon U\subseteq\mathbb{R}^n\to\mathbb{R}^n$ is a change of coordinates, i.e. $\dim\left(\big(Df(\vec{a})\big)\big(\mathbb{R}^n_{\vec{a}}\big)\right)=n$, then $Df(\vec{a})$ is an isomorphism (one-to-one and onto). Thus, $Df(\vec{a})$ maps a basis for $\mathbb{R}^n_{\vec{a}}$ to a basis for $\mathbb{R}^n_{f(\vec{a})}$ for each $\vec{a}\in U\subseteq\mathbb{R}^n$.

If we start with a position vector $\vec{R} = < x_1, x_2 >$ in rectangular coordinates in \mathbb{R}^2 , then the tangent space at $< x_1, x_2 >$, $\mathbb{R}^2_{< x_1, x_2 >}$, is spanned by:

$$\frac{\partial \vec{R}}{\partial x_1} = \langle 1, 0 \rangle \qquad \frac{\partial \vec{R}}{\partial x_2} = \langle 0, 1 \rangle$$

$$\langle 0, 1 \rangle$$

$$\langle x_1, x_2 \rangle$$

$$\mathbb{R}^2_{\langle x_1, x_2 \rangle}$$

In other words, $\{<1,0>,<0,1>\}$ are a basis for the tangent space of $\mathbb{R}^2_{< x_1,x_2>}$ at any point $< x_1,x_2>$.

Now let's change to polar coordinates (for simplicity let $x_1, x_2 > 0$):

$$r = \bar{x}_1 = \sqrt{x_1^2 + x_2^2} \qquad \qquad \theta = \bar{x}_2 = \tan^{-1}(\frac{x_2}{x_1})$$
 i.e., $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ by
$$f(x_1, x_2) = \left(\sqrt{x_1^2 + x_2^2} \text{ , } \tan^{-1}(\frac{x_2}{x_1})\right).$$

As just noted, $Df(x_1, x_2)$ will map a basis for $\mathbb{R}^2_{< x_1, x_2 >}$ into a basis for $\mathbb{R}^2_{f < x_1, x_2 >}$. So under the change of coordinates given by f, how is the new basis for $\mathbb{R}^2_{f < x_1, x_2 >}$ related to the basis for $\mathbb{R}^2_{< x_1, x_2 >}$?

If we call the basis for $\mathbb{R}^2_{f< x_1,x_2>}$, $\{\vec{v}_1,\vec{v}_2\}$, then we know that:

$$Df(x_1, x_2) < 1.0 > = \vec{v}_1$$

 $Df(x_1, x_2) < 0.1 > = \vec{v}_2$

But we can calculate $Df(x_1, x_2)$:

$$Df(x_1, x_2) = \begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \frac{\partial \bar{x}_1}{\partial x_2} \\ \frac{\partial \bar{x}_2}{\partial x_1} & \frac{\partial \bar{x}_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \frac{x_1}{\sqrt{x_1^2 + x_2^2}} & \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \\ -\frac{x_2}{x_1^2 + x_2^2} & \frac{x_1}{x_1^2 + x_2^2} \end{pmatrix}$$

$$Df(x_1, x_2) < 1,0 > = \begin{pmatrix} \frac{x_1}{\sqrt{x_1^2 + x_2^2}} & \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \\ -\frac{x_2}{x_1^2 + x_2^2} & \frac{x_1}{x_1^2 + x_2^2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{x_1}{\sqrt{x_1^2 + x_2^2}} \\ -\frac{x_2}{x_1^2 + x_2^2} \end{pmatrix} = \vec{v}_1$$

$$Df(x_1, x_2) < 0,1 > = \begin{pmatrix} \frac{x_1}{\sqrt{x_1^2 + x_2^2}} & \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \\ -\frac{x_2}{x_1^2 + x_2^2} & \frac{x_1}{x_1^2 + x_2^2} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \\ \frac{x_1}{x_1^2 + x_2^2} \end{pmatrix} = \vec{v}_2.$$

$$Df(x_1,x_2) \text{ maps the basis } \{<1,0>,<0,1>\} \text{ in } \mathbb{R}^2_{< x_1,x_2>} \text{ onto the basis } \\ \left\{<\frac{x_1}{\sqrt{x_1^2+x_2^2}}, \ -\frac{x_2}{x_1^2+x_2^2}>, \ <\frac{x_2}{\sqrt{x_1^2+x_2^2}}, \ \frac{x_1}{x_1^2+x_2^2}>\right\} \text{ in } \mathbb{R}^2_{<\sqrt{x_1^2+x_2^2},\tan^{-1}(\frac{x_2}{x_1})>}.$$

Notice that unlike the basis $\{<1,0>,<0,1>\}$ for $\mathbb{R}^2_{<x_1,x_2>}$, which is the same for any $< x_1,x_2> \in \mathbb{R}^2$, the new basis for $\mathbb{R}^2_{<\sqrt{x_1^2+x_2^2}}$, $\tan^{-1}(\frac{x_2}{x_1})>$ depends on x_1 and x_2 .

If we have a vector in rectangular coordinates $\vec{A} \in \mathbb{R}^2_{< x_1, x_2>}$ given by:

$$\vec{A} = \langle A^1, A^2 \rangle = A^1 \langle 1, 0 \rangle + A^2 \langle 0, 1 \rangle$$

how are the components \bar{A}^1 , \bar{A}^2 of $Df(x_1, x_2)(\vec{A})$, related to A^1 , A^2 ?

That is, what are \bar{A}^1 and \bar{A}^2 if:

$$Df(x_1, x_2)(\langle A^1, A^2 \rangle) = \langle \bar{A}^1, \bar{A}^2 \rangle$$
?

Let's use
$$Df(x_1, x_2) = \begin{pmatrix} \frac{x_1}{\sqrt{x_1^2 + x_2^2}} & \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \\ -\frac{x_2}{x_1^2 + x_2^2} & \frac{x_1}{x_1^2 + x_2^2} \end{pmatrix}$$
 as an example.

Notice, we can rewrite this in matrix form as:

$$\begin{pmatrix}
\frac{x_1}{\sqrt{x_1^2 + x_2^2}} & \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \\
-\frac{x_2}{x_1^2 + x_2^2} & \frac{x_1}{x_1^2 + x_2^2}
\end{pmatrix} \begin{pmatrix} A^1 \\ A^2 \end{pmatrix} = \begin{pmatrix} \bar{A}^1 \\ \bar{A}^2 \end{pmatrix}$$

$$\bar{A}^1 = A^1 \frac{x_1}{\sqrt{x_1^2 + x_2^2}} + A^2 \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$$

$$\bar{A}^2 = -A^1 \frac{x_2}{x_1^2 + x_2^2} + A^2 \frac{x_1}{x_1^2 + x_2^2}.$$

In general, for a change of coordinates in \mathbb{R}^2 , $f:U\subseteq\mathbb{R}^2\to\mathbb{R}^2$, given by:

$$f(x_1, x_2) = (\bar{x}_1(x_1, x_2), \bar{x}_2(x_1, x_2))$$

$$\left(\frac{\partial \bar{x}_1}{\partial x_1} - \frac{\partial \bar{x}_1}{\partial x_2}\right)$$

$$Df(x_1, x_2) = \begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \frac{\partial \bar{x}_1}{\partial x_2} \\ \frac{\partial \bar{x}_2}{\partial x_1} & \frac{\partial \bar{x}_2}{\partial x_2} \end{pmatrix}$$

$$Df(x_1, x_2)(< A^1, A^2 >) = < \bar{A}^1, \bar{A}^2 >$$
, becomes

$$\begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \frac{\partial \bar{x}_1}{\partial x_2} \\ \frac{\partial \bar{x}_2}{\partial x_1} & \frac{\partial \bar{x}_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} A^1 \\ A^2 \end{pmatrix} = \begin{pmatrix} \bar{A}^1 \\ \bar{A}^2 \end{pmatrix}. \text{ Thus:}$$

$$\bar{A}^{1} = A^{1} \frac{\partial \bar{x}_{1}}{\partial x_{1}} + A^{2} \frac{\partial \bar{x}_{1}}{\partial x_{2}} = \sum_{i=1}^{2} A^{i} \frac{\partial \bar{x}_{1}}{\partial x_{i}}$$
$$\bar{A}^{2} = A^{1} \frac{\partial \bar{x}_{2}}{\partial x_{1}} + A^{2} \frac{\partial \bar{x}_{2}}{\partial x_{2}} = \sum_{i=1}^{2} A^{i} \frac{\partial \bar{x}_{2}}{\partial x_{i}}.$$

Def. Let $(x^1, ..., x^n)$ and $(\bar{x}^1, ..., \bar{x}^n)$ be two coordinate systems in a neighborhood of a point, $p \in \mathbb{R}^n$. An n-tuple $< A^1, ..., A^n >$ is said to constitute the components of a **contravariant vector** (or a tensor of type (1,0)) at a point p if the components transform according to the relation:

$$\bar{A}^j = \sum_{i=1}^n \frac{\partial \bar{x}^j}{\partial x_i} A^i.$$

So a vector $\vec{A} = \langle A^1, ..., A^n \rangle \in \mathbb{R}_p^n$ is a contravariant vector (that is why we will write coordinates with superscripts from now on).

Another way to see that a vector $\vec{A} = \langle A^1, ..., A^n \rangle \in \mathbb{R}_p^n$ is a contravariant vector is if we represent it by:

$$\vec{A} = \sum_{i=1}^{n} A^{i} \frac{\partial \vec{R}}{\partial x^{i}} = \sum_{j=1}^{n} \bar{A}^{j} \frac{\partial \vec{R}}{\partial \bar{x}^{j}}$$

Then by the Chain Rule:

$$\frac{\partial \vec{R}}{\partial x^i} = \frac{\partial \vec{R}}{\partial \bar{x}^1} \frac{\partial \bar{x}^1}{\partial x^i} + \dots + \frac{\partial \vec{R}}{\partial \bar{x}^n} \frac{\partial \bar{x}^n}{\partial x^i} = \sum_{j=1}^n \frac{\partial \vec{R}}{\partial \bar{x}^j} \frac{\partial \bar{x}^j}{\partial x^i}$$

$$\vec{A} = \sum_{i=1}^{n} \sum_{j=1}^{n} A^{i} \frac{\partial \vec{R}}{\partial \bar{x}^{j}} \frac{\partial \bar{x}^{j}}{\partial x^{i}} = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} A^{i} \frac{\partial \bar{x}^{j}}{\partial x^{i}} \right) \frac{\partial \vec{R}}{\partial \bar{x}^{j}} = \sum_{j=1}^{n} \bar{A}^{j} \frac{\partial \vec{R}}{\partial \bar{x}^{j}}$$

$$\bar{A}^j = \sum_{i=1}^n A^i \frac{\partial \bar{x}^j}{\partial x^i}$$

Ex. Let $\gamma(t) = \left(x^1(t), \dots, x^n(t)\right)$ be a curve in \mathbb{R}^n . Show that the tangent vector, $\gamma'(t) = \left(\frac{dx^1}{dt}, \dots, \frac{dx^n}{dt}\right)$, is a contravariant vector.

Let $\vec{A} = \left(\frac{dx^1}{dt}, \dots, \frac{dx^n}{dt}\right)$ so that the j^{th} component is $A^j = \frac{dx^j}{dt}$. Let $\bar{\gamma}(t) = \left(\bar{x}^1(t), \dots, \bar{x}^n(t)\right)$ represent the same curve in another coordinate system $\bar{x}^1, \dots, \bar{x}^n$ so the tangent vector is:

$$\vec{\bar{A}} = \left(\frac{d\bar{x}^1}{dt}, \dots, \frac{d\bar{x}^n}{dt}\right) \text{ and } \bar{A}^j = \frac{d\bar{x}^j}{dt}.$$

Using the change of coordinates:

$$\bar{x}_1 = \bar{x}_1(x_1, \dots, x_n)$$

 \vdots
 $\bar{x}_n = \bar{x}_n(x_1, \dots, x_n)$

we get by the Chain Rule:

$$\bar{A}^{1} = \frac{d\bar{x}^{1}}{dt} = \frac{\partial \bar{x}^{1}}{\partial x^{1}} \frac{dx^{1}}{dt} + \frac{\partial \bar{x}^{1}}{\partial x^{2}} \frac{dx^{2}}{dt} + \dots + \frac{\partial \bar{x}^{1}}{\partial x^{n}} \frac{\partial x^{n}}{\partial t}$$

$$= A^{1} \frac{\partial \bar{x}^{1}}{\partial x^{1}} + A^{2} \frac{\partial \bar{x}^{1}}{\partial x^{2}} + \dots + A^{n} \frac{\partial \bar{x}^{1}}{\partial x^{n}} = \sum_{i=1}^{n} A^{i} \frac{\partial \bar{x}^{1}}{\partial x^{i}}$$

Similarly:

$$\bar{A}^{j} = \frac{d\bar{x}^{j}}{dt} = \frac{\partial \bar{x}^{j}}{\partial x^{1}} \frac{dx^{1}}{dt} + \frac{\partial \bar{x}^{j}}{\partial x^{2}} \frac{dx^{2}}{dt} + \dots + \frac{\partial \bar{x}^{j}}{\partial x^{n}} \frac{\partial x^{n}}{\partial t}$$
$$= A^{1} \frac{\partial \bar{x}^{j}}{\partial x^{1}} + A^{2} \frac{\partial \bar{x}^{j}}{\partial x^{2}} + \dots + A^{n} \frac{\partial \bar{x}^{j}}{\partial x^{n}} = \sum_{i=1}^{n} A^{i} \frac{\partial \bar{x}^{j}}{\partial x^{i}}$$

So the tangent vector to $\gamma(t)$ is a contravariant vector.

Ex. Let $\gamma(t)=(t\cos t^2$, $t\sin t^2$). Given that we know that $\gamma'(t)$ is a contravariant vector, find the components of the tangent vector (\bar{A}^1,\bar{A}^2) in polar coordinates from the components of the tangent vector (A^1,A^2) in rectangular coordinates.

$$\gamma'(t) = (A^{1}, A^{2}) = (-2t^{2} \sin t^{2} + \cos t^{2}, 2t^{2} \cos t^{2} + \sin t^{2})$$

$$A^{1} = -2t^{2} \sin t^{2} + \cos t^{2}$$

$$A^{2} = 2t^{2} \cos t^{2} + \sin t^{2}.$$

Since (A^1, A^2) is a contravariant vector:

$$\bar{A}^{1} = A^{1} \frac{\partial \bar{x}^{1}}{\partial x^{1}} + A^{2} \frac{\partial \bar{x}^{1}}{\partial x^{2}} \qquad \bar{A}^{2} = A^{1} \frac{\partial \bar{x}^{2}}{\partial x^{1}} + A^{2} \frac{\partial \bar{x}^{2}}{\partial x^{2}}$$

$$x^{1} = \bar{x}^{1} \cos \bar{x}^{2} = t \cos t^{2}; \qquad \bar{x}^{1} = t$$

$$x^{2} = \bar{x}^{1} \sin \bar{x}^{2} = t \sin t^{2}; \qquad \bar{x}^{2} = t^{2}.$$

Notice that we want $\frac{\partial \bar{x}^i}{\partial x^j}$, but we are given x^1, x^2 in terms of \bar{x}^1, \bar{x}^2 , and not the other way around. However, remember that if:

$$J = \begin{pmatrix} \frac{\partial x^1}{\partial \bar{x}^1} & \frac{\partial x^1}{\partial \bar{x}^2} \\ \frac{\partial x^2}{\partial \bar{x}^1} & \frac{\partial x^2}{\partial \bar{x}^2} \end{pmatrix}, \text{ then its inverse is } J^{-1} = \begin{pmatrix} \frac{\partial \bar{x}^1}{\partial x^1} & \frac{\partial \bar{x}^1}{\partial x^2} \\ \frac{\partial \bar{x}^2}{\partial x^1} & \frac{\partial \bar{x}^2}{\partial x^2} \end{pmatrix}.$$

So let's calculate J and invert the 2x2 matrix to find J^{-1} and hence the derivatives we want.

$$J = \begin{pmatrix} \cos \bar{x}^2 & -\bar{x}^1 \sin \bar{x}^2 \\ \sin \bar{x}^2 & \bar{x}^1 \cos \bar{x}^2 \end{pmatrix}$$

$$\det(J) = \bar{x}^1 \cos^2 \bar{x}^2 + \bar{x}^1 \sin^2 \bar{x}^2 = \bar{x}^1$$

$$J^{-1} = \frac{1}{\bar{x}^1} \begin{pmatrix} \bar{x}^1 \cos \bar{x}^2 & \bar{x}^1 \sin \bar{x}^2 \\ -\sin \bar{x}^2 & \cos \bar{x}^2 \end{pmatrix} = \begin{pmatrix} \cos \bar{x}^2 & \sin \bar{x}^2 \\ -\sin \bar{x}^2 & \cos \bar{x}^2 \end{pmatrix}$$

$$\frac{\partial \bar{x}^1}{\partial x^1} = \cos \bar{x}^2 \qquad \frac{\partial \bar{x}^1}{\partial x^2} = \sin \bar{x}^2$$

$$\frac{\partial \bar{x}^2}{\partial x^1} = -\frac{\sin \bar{x}^2}{\bar{x}^1} \qquad \frac{\partial \bar{x}^2}{\partial x^1} = \frac{\cos \bar{x}^2}{\bar{x}^1}.$$

So we get:

$$\begin{split} \bar{A}^1 &= A^1 \frac{\partial \bar{x}^1}{\partial x^1} + A^2 \frac{\partial \bar{x}^1}{\partial x^2} \\ &= (-2t^2 \sin t^2 + \cos t^2)(\cos \bar{x}^2) + \left((2t^2 \cos t^2 + \sin t^2)(\sin \bar{x}^2) \right) \\ &= (-2t^2 \sin t^2 + \cos t^2)(\cos t^2) + \left((2t^2 \cos t^2 + \sin t^2)(\sin t^2) \right) \\ &= \cos^2 t^2 + \sin^2 t^2 = 1. \\ \bar{A}^2 &= A^1 \frac{\partial \bar{x}^2}{\partial x^1} + A^2 \frac{\partial \bar{x}^2}{\partial x^2} \\ &= (-2t^2 \sin t^2 + \cos t^2) \left(-\frac{\sin \bar{x}^2}{\bar{x}^1} \right) + \left((2t^2 \cos t^2 + \sin t^2) \left(\frac{\cos \bar{x}^2}{\bar{x}^1} \right) \right) \\ &= (-2t^2 \sin t^2 + \cos t^2) \left(-\frac{\sin t^2}{t} \right) + \left((2t^2 \cos t^2 + \sin t^2) \left(\frac{\cos t^2}{t} \right) \right) \\ &= 2t \sin^2 t^2 + 2t \cos^2 t^2 = 2t. \end{split}$$
 Thus we have:
$$(\bar{A}^1, \bar{A}^2) = (1, 2t). \end{split}$$

Def. Let $(x^1,...,x^n)$ and $(\bar{x}^1,...,\bar{x}^n)$ be two coordinate systems in a neighborhood of a point $p \in \mathbb{R}^n$. An n-tuple $(B_1,...,B_n)$ is said to constitute the components of a **covariant vector** (or a (0,1) tensor) at a point, p, if the components transform according to the relation:

$$\bar{B}_j = \sum_{i=1}^n \frac{\partial x^i}{\partial \bar{x}^j} B_i .$$

Ex. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Show that the gradient $\nabla f = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right)$ is a covariant vector.

In this case, $B_j=\frac{\partial f}{\partial x^j}$. if $x^1=x^1(\bar x^1,\ldots,\bar x^n),\ldots,x^n=x^n(\bar x^1,\ldots,\bar x^n)$, then by the Chain Rule in the $\bar x^1,\ldots,\bar x^n$ coordinate system:

$$\nabla f = \left(\frac{\partial f}{\partial \bar{x}^{1}}, \dots, \frac{\partial f}{\partial \bar{x}^{n}}\right)$$

$$\bar{B}_{j} = \frac{\partial f}{\partial \bar{x}^{j}} = \frac{\partial f}{\partial x^{1}} \frac{\partial x^{1}}{\partial \bar{x}^{j}} + \frac{\partial f}{\partial x^{2}} \frac{\partial x^{2}}{\partial \bar{x}^{j}} + \dots + \frac{\partial f}{\partial x^{n}} \frac{\partial x^{n}}{\partial \bar{x}^{j}}$$

$$\bar{B}_{j} = B_{1} \frac{\partial x^{1}}{\partial \bar{x}^{j}} + B_{2} \frac{\partial x^{2}}{\partial \bar{x}^{j}} + \dots + B_{n} \frac{\partial x^{n}}{\partial \bar{x}^{j}}$$

$$= \sum_{i=1}^{n} \frac{\partial x^{i}}{\partial \bar{x}^{j}} B_{i}$$

So ∇f is a covariant vector.

Ex. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ and we know that

$$\nabla f = (4x^1((x^1)^2 + (x^2)^2) + x^2, \ 4x^2((x^1)^2 + (x^2)^2) + x^1).$$

If $x^1=\bar x^1\cos\bar x^2$ and $x^2=\bar x^1\sin\bar x^2$, find ∇f in the $(\bar x^1,\bar x^2)$ coordinate system. Give the answer only in terms of $\bar x^1,\bar x^2$ NOT x^1,x^2 .

Since ∇f is a covariant vector, if we call $\vec{B}=(\bar{B}_1,\bar{B}_2)$ the gradient with respect to \vec{x}^1,\vec{x}^2 and $\vec{B}=(B_1,B_2)$ the gradient with respect to x^1,x^2 then we can write:

$$\bar{B}_1 = B_1 \frac{\partial x^1}{\partial \bar{x}^1} + B_2 \frac{\partial x^2}{\partial \bar{x}^1}; \qquad \bar{B}_2 = B_1 \frac{\partial x^1}{\partial \bar{x}^2} + B_2 \frac{\partial x^2}{\partial \bar{x}^2}$$

$$B_1 = 4x^1 ((x^1)^2 + (x^2)^2) + x^2$$

$$B_2 = 4x^2 ((x^1)^2 + (x^2)^2) + x^1$$

$$\frac{\partial x^{1}}{\partial \bar{x}^{1}} = \cos \bar{x}^{2} \qquad \qquad \frac{\partial x^{2}}{\partial \bar{x}^{1}} = \sin \bar{x}^{2}$$

$$\frac{\partial x^{1}}{\partial \bar{x}^{2}} = -\bar{x}^{1} \sin \bar{x}^{2} \qquad \qquad \frac{\partial x^{2}}{\partial \bar{x}^{2}} = \bar{x}^{1} \cos \bar{x}^{2}$$

$$\begin{split} \bar{B}_1 &= [4x^1((x^1)^2 + (x^2)^2) + x^2] \cos \bar{x}^2 + [4x^2((x^1)^2 + (x^2)^2) + x^1] \sin \bar{x}^2 \\ &= [4\bar{x}^1 \cos \bar{x}^2 (\bar{x}^1)^2 + \bar{x}^1 \sin \bar{x}^2] \cos \bar{x}^2 \\ &\quad + [4\bar{x}^1 \sin \bar{x}^2 (\bar{x}^1)^2 + \bar{x}^1 \cos \bar{x}^2] \sin \bar{x}^2 \end{split}$$

$$&= 4(\bar{x}^1)^3 (\cos^2(\bar{x}^2) + \sin^2(\bar{x}^2)) + 2\bar{x}^1 (\sin \bar{x}^2) (\cos \bar{x}^2)$$

$$&= 4(\bar{x}^1)^3 + 2\bar{x}^1 ((\sin(\bar{x}^2))(\cos(\bar{x}^2)).$$

$$\begin{split} \bar{B}_2 &= [4x^1((x^1)^2 + (x^2)^2) + x^2](-\bar{x}^1\sin\bar{x}^2) \\ &\quad + [4x^2((x^1)^2 + (x^2)^2) + x^1](\bar{x}^1\cos\bar{x}^2) \\ &= [4\bar{x}^1(\cos\bar{x}^2)(\bar{x}^1)^2 + \bar{x}^1\sin\bar{x}^2](-\bar{x}^1\sin\bar{x}^2) \\ &\quad + [4\bar{x}^1(\sin\bar{x}^2)(\bar{x}^1)^2 + \bar{x}^1\cos\bar{x}^2](\bar{x}^1\cos\bar{x}^2) \\ &= -(\bar{x}^1)^2(\sin^2(\bar{x}^2)) + (\bar{x}^1)^2(\cos^2(\bar{x}^2)). \end{split}$$

So in the coordinate system \bar{x}^1 , \bar{x}^2 the gradient of f is:

$$\nabla f = (4(\bar{x}^1)^3 + 2\bar{x}^1((\sin(\bar{x}^2))(\cos(\bar{x}^2)), (\bar{x}^1)^2(\cos^2(\bar{x}^2) - \sin^2(\bar{x}^2))).$$