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The Curvature Tensor

Intuitively, the Riemann curvature tensor measures the difference in
parallel transporting a vector along two different sets of sides on a small

“parallelogram” on a manifold M.
Letp € M andV € T,M and @ a parametrization containing p.

lety; = B(cy), ¥z = D(cy), ete. A'(V)

A'(V)
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(@, ..., ap)

Let V' € T,,M be parallel transported first from p to q along y; and then
from @ to " along ¥,. Call the parallel transported vector A’ (). Now

parallel transporting IV from p to s along ¥4 and then from s to 7 along 3
we get A" (V). The difference, V = A"V — A'V, is a linear transformation

defined at p from T,,(M) — T,.(M).
(A"V — A'V)' = R al BFVY

Another way to think of R}kl is that it tells us how much V' € T, (M) swings

toward the i'" direction when we parallel transport IV completely around a
small parallelogram.



Let (M, g) be a Riemannian manifold.

Def. The Riemann curvature tensor, ngl , on a coordinate patch,

U € M, is defined by: X;ik;j - '] K= ]le where X is a vector field
over U.
Proposition:

i _ 0Tl

i rh
ikl = 55 axk iy T Tk — Thaej -

This formula follows from a direct calculation of X.lk.j — l]k

. aXi ,
. , [ _ Lyl
starting with X;j =7 + FUX :

. Kol aXi .
i _ i i ym i
bk = o (5 + TXY) + Ty X — TS,
i l
oxkox] = oxk J axk

00 (B + 1xt) - ("’% +ThXY).

Now calculate X.lk.j and subtract.



Proposition: R}kl is a tensor of type (1, 3).

Idea of proof: This follows from the transformation properties of F]Lk

Proposition: On a Riemannian manifold, the curvature tensor satisfies
L +RL.+R =0
Jjkl klj ljk —
Lo + Ry 4+ R =0
jkl;h jlh;k jhk;l — Y-

These are called Bianchi identities.

Notice that from the definition of R}kl we have the following relationship:
P _ [
jkl = _Rka-

i

. e ) P _ P
In particular if j = k, then we have: R;;; = jjiL = Rjjl = 0.

1]

By contracting the metric tensor g;,,, with R}kl we get a (0, 4) tensor:
R — [
jkim = Jim BNkl .

Def. R]-klm is called the Riemann covariant curvature tensor.



Proposition: Let U be a coordinate patch on a smooth manifold, M. Then
we can say the Riemann covariant curvature tensor has the
following properties:

1) Rixim = —Rijim

2) Rjkim = —Rjkmu

3) Rjkim = Rimji

4) Rixim + Ryijm + Rijkm =0 (1% Bianchi identity)

5) Rjklm;h + Rjkmh;l + Rjkhl;m =0 (2" Bianchi identity).

A (0, 4) tensor on a manifold of dimension n has n* components. However, the
symmetries of Ry, reduces the number of independent components to

1
Enz (nz — 1). In particular, for a surface n = 2 the number of independent

components of Rk, is one, R121,. In fact, the Gaussian curvature (for those
who know Gaussian curvature) of a surface, K, is:

_ _Ripopp
det(g;;)

Another approach to defining the Riemann curvature tensor is through the
covariant derivatives with respect to general (smooth) vector fields, X and Y on
M. This approach is “coordinate free.” It is not difficult to show that for vector
fields, X, Y, and Z on R™, and the standard Euclidean metric we have:

VXVYZ - VYVXZ == V[X,Y]Z'



This is true because if Y = Yjaj, /= Zkak (in Einstein notation) then
VyZ = VYja]_Zkak
= Y/V;(Z*0;)
= Yfaj(Zk)ak =Y (2).

Similarly, VyVyZ = X(Y(Z))and VyVxZ =Y (X(2)).

Thus we have:
VxVyZ —VyVxZ = X(Y(2)) - Y(X(2)) = (XY — YX)(Z)
== V[X’y]Z .

Since R™ is “flat,” we would like R}kl to be zero for this situation (or any one
where the Riemannian metric was isometric to the standard Euclidean metric).

Def. R(X,Y)Z = VxVyZ — VyVxZ — V[X’y]z where:
R: x(M) X x(M) X x(M) - x(M).

In fact, it’s not difficult to check that R(X, Y)Z is a tensor field of type (1, 3),
which is anti-symmetricin X and Y.

let X = X'0;, Y = Yjaj, and Z = Z*0, be vector fields on M. By the
multilinearity of R we have:

R(X,Y)Z = X'Y/Z*R(9;,0,)0y .



9 a) o ., 0
axi’axi) axk — UK gyl

Now let’s show R (
Since [9;,8;] = 0, we have
R(0:,0;)0x = V5,Va,0k — Vo, Vo, 0k
= V5,(T}%0n) — Va,(Tk0r)

h rh

or
=T/1V,.0, + f"ah [k Vo, Op — alkah

l

4 %k _ _
(rr — AT + =24 )al RLy .

Thus  R(X,Y)Z = (X YJZ"Ruk

Ex. Find the components of the Riemann curvature tensor, R}klr for R?
with the metric induced by polar coordinates.

d(x!, x?) = (x' cosx?,x! sin x?).

Sincen = 2, R}kl has 16 components but, by symmetry

considerations, many of them are 0. For example:

i i i _
Ri1j =—Ri1j = Ry1;=0

i i
22j = TRy = RZZ] 0.



That’s 8 components that are already 0 (and this is true for any
surface with any Riemannian metric):

1 — pl — pP2 _ p2 — pl — pl — D2 — D2 —
R111 - R112 - R111 - R112 - R221 - R222 - R221 - R222 =0

That leaves 8 components, 4 of which we can get through the
relationship: R}kl = —R,lcjl :

Recall that for polar coordinates:

2 _pr2 _ 1 1 _ 1 i _ _
F]_Z — F21 — ; ’ F22 = —X7, all other I}k — O, and:
ar‘%z — _1 . ar‘%z — 0. al—‘%z — _1. ar%z — O
ox? (x1H2’ 0x2 ’ ox1 ’ 0x2 '

The missing 8 components of R}kl are:
1 _ 1 . 1 _ 1
Ri;1 = —R311; Riz; = —R31,

2 _ _p2 . 2 _ _p2
R121 - R211' R122 - R212 .



i i
i _ 0Ty _ 9Ty
JEL ™ 9xi  axk

| h . h
+ [Tk — Thie I

1 _ 0T, 6F11 1 rh —
Risi =5 2= 55 +Tulh —Thli =0

1 _ 0Ty 6F21 1 rh
Rizs = 52— 55+ Ty — Tnpldy

=—1-0+0—(-xY)(5) =0

dri, 6F11 2 Th
Riz1 = 5% — 55 + Tl — Tl

-0+ (3) () -0-0

RZ — ar%z _ ar%l
122 dx1 9 x2

+ Fﬁlehz - r‘ifzr‘2h1 =0

So all the components of R;kl are 0 (As we would expect for the metric

induced by polar coordinates on R? ).



Ex. Find the components for the Riemann curvature tensor, R}kl, for the
Poincaré disk, {(x, y)|x? + y? < 1}, with the metric:

_ 4 1 0
(gij) T (1-(xD)2—(x2)2)2 (0 1)'

As for any surface, by symmetry we have:

1 — pl — p2 — p2 — pl — pl — p2 — D2 —
R111 - R112 - R111 - R112 - R221 - R222 - R221 - R222 = 0.

We just need to find R, Riy5, R%,1, and R%,,.

We get the other four components from R}kl = —R,l(jl.

[)’

To calculate R}kl we need to know [ ik and Py

4 1 0y,
(9) = (1= () b 1)

(97) = (1 (xl) (xz)) (1 0)

0 1

2
ZE i (09K aglj _ 09k
£ 2 dxJ axk dxt )
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Since (gij) is diagonal, the calculation isn’t too bad. For example:

2

; 1 /091 0gnn 0911

L = — ll< — )

Jk l_lzg 0x1 + 0x2  0x!

4

911 = Y22 = (1-(xD)2—(x2)2)2 " g1z = 921 = 0.

0911 __ 0922 __ 16x! ) 0911 __ 0922 _ 16x2
axt  axl  (1-(x12-(x2)2)37  ax?  8x?  (1-(x1)?-(x»)?)3

It =
11 29

, 1 (6911+0911 a911)
dxt  ox1  0xt

N | =

(1—<x1>2—(x2)2)2( J6x ) 21

4 A-GD2-(x2)2)3) ~ 1-(xD2-(x2)?

Similarly, we get:

1

1 _pr2 12 _ 2x
=I5 =13 =

. 1 —2x1
1—(x1)2—(x2)2"’ 1_‘22 -

1_(x1)2_(x2)2

2

2x — 2x?2
F222 — F211 — F112 = 1—(x1)2—(x2)2; F121 = 1—-(x1)2—(x2)2 "
ori, 2(1+(x1)2—(x2)2). T, — 4x1x?
axl  (1-(x1)2—(x2)2)2’ 9x2  (1—(x1)2—(x2)2)2
ar3, — 4x1x? ors, 2(1—(x1)2+(x2)2)

ox1 (1—(x1)2—(x2)2)2; ox2 (1—(x1)2—(x2)2)2 °
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let D = (1 — (x1)% — (x?)?)2.

1 1
1 __ 0, 09Iy, 1 rh 1 ph
R121 ~ 9xl - 9x2 + Fh1F12 - thrn

st e (a0 (a0 (o) (20
2 2 -2 -2
-E)E)- ) ) -0

1 1
1 __ 0l 0Ty 1 rh 1 rh
Riz2z = 9xl  9x2 + Thal22 = Thalzs

~2(1+(x1)*-(x2)%)  2(1-()*+(x2)?) oty f—2a
— D — D +(\/5) D

) _D

4

+(5) (5~ E) -

N——"

SII%,

_org, ori

2 2 Th 2 rh
Riz = 9xl  9x2 + Ipaliz = TRalhs

_ 2(1+(x12) —(x?) )_ —2(1—(x1D) +(x?) ) N (_j%z) (2\/%2)

(%) &) -FE-F ) -3




RZ — (31"%2 _ ar%l
122 91l dx2

= +

+ Fr%1rzhz _ FF%ZFZ}ll

—4x1x?2  4x1lx? —2x2
+(

D D VD

-(5

So now we can write:
—_ 4 ]
(1-GD?-(x2)?)?’

1 —
R122 -

4

R%Zl = (1—(x1)2—(x2)2)2;

All other R}kl = 0.

Tensors of order 4 are messy. One way to summarize the information is through

the (0, 2) Ricci tensor defined by:

) () + (%) (5)

)(5)- (5 )

4
(1-(x1)?-(x?)?)?

1 —
R212 -

2 . -4
R211 -

)

_ pk  _
Ri; = Ry;; = Ryj; + -+ Ry

(1-()2-(x2)2)2

12



Proposition: The Ricci tensor is symmetric.

Proof: R;; = Rllccij SO we can write:

k k
dxk dxt

hrk _ phopk
R;; + I Ten — Tjlin

The first and third terms on the right hand side are clearly symmetricin i
and j, since Fg = I‘J‘f

The last term is also symmetric. To see this switch { and j and
reindex the new term by switching h and k.

To see that the second terms is symmetric, notice:

d(In,/detg) rk

dxJ Jk

61‘;-‘,( _ 92%(In./detg) _ 92(In,/detg) _ ark,

dxt dxiox] dxJoxt oxJ

R..

ij — R

Jt

Def. The scalar curvature, R, is defined to be the trace of the Ricci tensor with
respect to the metric g:

13
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Def. On any Riemannian manifold, (M, g), the Einstein tensor, G, is a
tensor of type (0, 2) whose components are given by:

1
Gaﬁ = Raﬁ - Egaﬁ(R)

where R are the components of the Ricci tensor, g, are the
components of the metric tensor, and R is the scalar curvature.

Def. (M, g) has an Einstein metric if there is a constant A such that
R;; = Agij forall i, j, ..., . This means the Ricci tensor is a constant
multiple of the metric tensor.

Ex. Find the components of the Ricci tensor, Rl-j, and the scalar curvature, R, for
the Poincaré disk, {(x,y)| x2 + y? < 1}, with the metric:

_ 4 1 0
(gij) T (1-(xD)2—(x2)2)2 (0 1) '

Show that (gij) is an Einstein metric.

_ pk  _
Ri; = Ryi; = Ry;; + R .

From our previous example we know that:
-4

Rize = Gg-ome)  Fre =

4
(1-(x1)?-(x?)?)?

4
Rizt = GGy Ren =

—4
(1-(xH)?-(x?)?)?

and all other R]?kl = 0.
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Thus we have:
-4
(1-(x1)2-(x2)2)2

Ry, = R%n + R%n =

R;y =Ry, = ha + R%12 =0

-4

Ry2 = Rizy + Ry = (1—(x1)2—(x2)2)2

— 4 1 O
Thus: (Ri;) T (-(ahH2-(x2)2)2 (0 1) = (g4

Hence (gl-j) is an Einstein metric.

Now find the scalar curvature:

R = ginij = 9" Ry; + g"*Riz + g°' Ry + g**Ry;

() = BT (1 0)

(1-(x1)’-(x2))” 4
k= 4 (<1—<x1)2—(x2)2)2)

+ (1-6)*-()°) (o) =2

4 (1-(x1)?-(x%)?)?



As mentioned earlier, the Gauss curvature of a surface is:

R
K = — 1212
det(gij)

_ i _ 2
Ri212 = 9i2R421 = 922R%21

= ( )(
(1)) (1= ()

4 4

7)

. 16
T (1-(x1)2—(x2)2)4

16
det(gif) = (1-(x1)2—(x2)2)4

So we have the Gaussian curvature K :

16

(1)—(x2)?)
K=-— c 16 ) = —1.

(1-G1)2-(x2)?)

16
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Einstein Field Equations:

If we model the universe in four coordinates (3 spatial, 1 time), (x, Y, Z, t),
then the geometry can be described by 16 equations which are known as
Einstein’s field equations:

1 8nG L.
Rij == (gij)R + (N)gij = ~— Lijp  Lj=1234

R;; =components of the Ricci curvature tensor
gij =components of the metric tensor
R =scalar curvature
=scalar function representing expansion or contraction of space-time

A lar functi ti i traction of ti

;i =components of the stress-energy-momentum tensor
T ts of the st tum t
C =the speed of light
G =6.67x10"1m3/(s% * kg).

All of the tensors are symmetric so there are actually “only” 10 (instead of 16)
equations represented above.

The Ricci curvature tensor and the scalar curvature are both functions of the
components of the metric tensor g;; and its first and second partial derivatives.
Thus the field equations are 10, second order, non-linear partial differential
equations in the components of the metric tensor. A solution to the field
equations is a metric tensor on space-time that allows one to calculate the
Riemann, Ricci, and scalar curvatures at any point.



