Vector Fields Along Curves

Given a curve, ¥ (t), on a smooth manifold M and a vector Vy € Ty, ;)M we
want to be able to say what it means to transport V in a “parallel” fashion along
the curve y (t) to a vector V; € Ty, (¢,yM. This notion of “parallel transport” will

become important when we discuss the Riemann curvature tensor on M. it’s also
important in the discussion of geodesic curves on a manifold.

Def. Let M be a smooth manifold and y: I = M be a smooth curve in M
where [ is an interval in R. We call V' a vector field along Y if for each
t €1, V(t) € Ty)M and V defines a smooth map I = TM. We

denote the set of all smooth vector fields on M along y by x,, (M).

A vector field along a curve is not necessarily the restriction of a vector field on M
to y. For example, whenever a curve self-intersects:
Y(to) = Y(tl) with tO * tl, but V(to) * V(tl)
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We defined a connection on Masamap, V: y(M) X y(M) — y(M).
Now we want to define a map D;: x,, (M) — x, (M).

Def. Let M be a smooth manifold with a connection V and y: I — M a smooth
curve on M, then the unique map Dy: x, (M) — x,, (M) such that:

1) D,(V+ W) =D (V) + D.(W)
2) De(fV) = GV + () (D)
3) If V extends to a vector field ¥ € y(M), then D, (V) = V1 (Y)

is called the covariant derivative along y.

If D; exists, we can use properties 1, 2, and 3 to find a formula for it. Let U be a
coordinate patch on M with coordinates (x1, ..., x™). Forany V € Xy (M) we
can write:
. .9 .
S | — a2 . i 00
V=20 =v'——; vt e c°(1).
By conditions 1 and 2:
dvt

D.(V) = D,(v'9;) = v'9; + v'D(9;) where ¥’ = —

If we write Y (t) = (yl(t),yz(t), ...,y"(t)), e, xI =y/(b),

then:
n
r© =) 7.
j=1

By condition 3:

D(3)) = V(@) = ) () Va,(8)) = 7 (T) @)
=1



Thus we have:

D) = (#9)3; + (T () (v1)ax) = (v + TEGA) (7)) oy

To show that D; exists, one can start with this formula and show it satisfies
conditions 1, 2, and 3.

Def. Let M be a smooth manifold with a connection V and let y: I — M be a
smooth curve on M. A vector field I/ along ¥ is called parallel if D; (/) = 0 for
allt € 1.

Proposition: Let M be a smooth manifold with a connection V and let
y:1 = M be a smooth curve on M, where [ is a
compact (i.e. closed and bounded) interval of R.
Let ty € I, set p = y(to), and let V be any vectorin T, M.
There exists a unique vector field of M along y that is parallel and

has V(to) == Vo.

In this case, we are parallel transporting the vector V}, along y. That is, V(t)is
the parallel transport of Vy along . The existence and uniqueness of this vector
field along Yy comes from the existence of a unique solution to a system of
differential equations. Specifically, if V(t) = (vl(t), . v”(t)), then we need
to show there is a unique V (t) such that:

O+ TV Y =0 fork = 1, .., nwith V(te) = (V2 (), .., v (¢))

This comes from a theorem in differential equations.



Ex. Let M = R? with the standard metric. Then Fl-lj = 0 andif
Vo = (v}, v8) our parallel vector field V () must satisfy:

p,(V)=0=22 j=12.
Thus we have: V(t) = (vl(t),vz(t)) = (v§,vd).

p

//L

Since the components of I/ (t) are constant, if we parallel transport any

vector around any closed curve ¥ on M we get back to the same vector. For
general manifolds this does not happen, in fact, the failure to return to the
same vector is a measure of curvature.

Saying V (t) is a parallel vector field along ¥ means that D, (V') only
has components in normal directions to the tangent space Ty(t)M. That is,

if we project D¢ (V) onto T, (1)M we get the zero vector. Thus V(t) is
changing just as T, (1) M is changing as t changes.



Suppose a person is standing at the north pole of a sphere (the point
(0,0, 1)) with a bow and arrow pointing parallel to the x-axis — we’ll think of
the arrow as the vector we are parallel transporting (the vector < —1,0,0 >).
If the person now walks, without turning, along the line of longitude 8 = 1
towards the equator (the point (—1, 0, 0)), then the arrow will be pointing
down, that is, parallel to the z-axis (the vector < 0, 0, —1 >) at the point

(=1,0,0).

X
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1
If the person does not turn and walks (sideways) 2 of the way around the

sphere to the point (0, —1, 0), their arrow will continue to point straight down,

parallel to the z-axis.

Now the person walks back to the north pole (without turning, thus they
are walking backwards) along the line of longitude & =. When they get to the
north pole, the arrow is now parallel to the y-axis (the vector < 0,—1,0 >),
which is different from the beginning when the arrow was parallel to the Xx-axis
(the vector < —1,0,0 >).



Ex. Let S? € R3 be the unit sphere where:

@0, ) = (cos O sin ¢, sin O sin @, cos P)
0<0<2m, 0<¢<m.

Parallel transport the vector < 0, 1 > at the point (O, g) to the north

pole along the following two paths and show that they are different vectors.

1) Path1: along8 =0, q§=§—t, OStSE
T T

2) Path 2: along 0 = t, ('b:E’ OStSE
andthenalong9=§, q§=§—t, OStSE.

1) y(t) = (O,S—t) ;0 < tS%
Notice that Y (0) = (0,%), whichis (1,0,0) in R3 and y (g) = (0,0),
which is (0,0, 1) in R3. We have seen that for @ we have:

59 =< —sinf@sin¢,cosfsing,0 >

5(1, =< cosB cosgp,sinf cosgp,—singp >

Sothevector< 0,1 > = 5(!) aty(0) = (0’ g)

s By (0,2) =<0,0,-1>inR3,




We also know:

_ (sin? ¢ O)

g_( 0 1
F211=F112=C0t¢

I = —sin¢ cos ¢

Fl-’; = 0 otherwise.

To parallel transport < 0,1 > we solve D,V = vk + Filj ()'/i)Uj = 0 where

V(t) =< vi(t),v3(t) >; V() =<v1(0),v%(00) >=<0,1>.

y(®) = (rr®,y*®) = (0,5 - ¢)
y'(®) = (10,72 ®) = (0,-1).

k=1 v+ TS ) =0

i) =0; y*(t) = -1,

50 vl + lej(—l)vj = 0.

I}, =cotgp; TJp =0

)

thus we have vl — (cotp)v! = 0.
y(©) =(0,5-t)=(6,0)
since g— t=¢ so,

vl — (cot(g — t)) vl =

v! — (tant)v! = 0.



vl = (tant)v?

1.71
1 = tant
v sint
J—dt = [(tant) dt = [ ——dt
Inv! +¢; = —In(cost) + ¢,
Inv! = —In(cost) + c3

vl = e—ln(cos t)+cs — c, sect.

v1(0)=c,(1)=0 = ¢,=0 = vi(®)=0.

k=2 v+ TH(y)v/ =0

yi) =0; y*(t) =-1.

= v —T3v/ =0,
F221 - F222 =0
= v2 =0
= v =c
v2(0) =1
204 —
= ve(t) =1
vi(t) =0.

= V() =<0,1>=dyt).



At the north pole 8 = 0, ¢ = 0, and:

Eﬁd, (0,0) =< (cos0)(cos0),(sin0)(sin0),—sin0 >=<1,0,0 >ps

So the parallel transport of < 0,1 > atthe point @ = 0, ¢ = g (which in R3
is(1,0,0)and < 0,1 > =< 0,0,—1 >) to the north pole
(@ =0, ¢ =0)isagain the vector < 0,1 >. However,at 0 = 0, ¢ = 0:

<0,1>= @4(0,0)=<1,0,0 >€ R®.

T

2) First parallel transport < 0,1 >at 68 =0, ¢ =§ to 0 = oy ¢ = g

along ¥4 (t) = (t,g); 0<t Sg
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We must solve the differential equations:

D,V = v* + Fk(yl)(vf) =0 wherey,(t) = (1,0).
k=1: v+ T5(v)(v/) = 0.

yi() = 1; yi) =0
= v+ T4 (v/) = 0.
= v + (cotp)v? = 0.

But ¢ = g so cot@ = 0, and thus we get vl =0 = v! = constant,
andsincev!(0) =0, = vi(t) =0.

k = 2: % +F2(yl)(v1)—0
yi) =1; y‘%(t) =0
= 1% +F1](y1)(v)

Yy = —(sing)cos¢p; T =0
But for ¢p =

and since v

) S¢ =0soT4 =0,and ¥2 = 0 = v2(t) = constant,
(0) = = vi(t) =1

Nm:u

V() =< 0,1> alongy4(t) = (tg)

at (3,3 ) <0,1>= By(3,5)=<00-1>€R3.



So the parallel transport of < 0,1 > at ( ) (whichis < 0,0,—1 > at
(1,0,0)in R3) to (E'E) along y4 (t) is the vector:

<0,1>=<0,0,-1>gat(3,5).

Now we need to parallel transport < 0, 1 > along the curve:

r@®=(55-t); 0<t<}

from the point (— —) =(0,1,0) € R3to (2, ) =(0,0,1) € R3.

2’2
v, =(00,-1); y1=0; y%=-1.
D,V =v +Fk(y2)(v1)—0
k=1: v+ T5(5)(v) =0

v+ T,(-D(v/) = 0.

I}, =cotgp; Tpp=0
= vl — (cotp)vl = 0.

s
¢=5—t
% n_ 1 _
= % (cot(2 t)) v =0
v! — (tant)v! = 0.

= v! = (tant)v’;

vt sint

vl cost
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1% sint
f;dt o fcostdt
Inv! = —Incost + ¢
pl = e—ln(cos t)+c

0 =v1(0) =c,(sec0) =c,; = vi(t) =0.

k=2 v+ T5(y5) () =0

y2=0  y;=-1

> 2+ I5=D() =0.
[ =0=T03
= 2 = 0 and v2(t) = constant.
1 = v2(0) = constant
v2(t) = 1.
V() =<0,1>.

Thus < 0,1 > at the point (— —) = (0,1, 0) is parallel transported to

2’2
<0, 1>atthep0|nt(2, )= (0,0,1).

H t(n n)
owever, a 513

<0,1>=0(3,7)

=< 0,0,—1 >ps.

= ¢, sect.
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But at (g, 0):

<0,1>= Eﬁd, (g, 0) < (cos %) (cos0), (sin %) (cos0),—sin0 >
=<0,1,0 >ps .

Thus, along Y1 and then Y5, thevector< 0,1 > =< 0,0,—1 >ps at

(O,g) get parallel transportedto < 0,1 > =< 0,1,0 >3 at (g, 0).

Note: this is different from the vector, < 1, 0,0 >3, from part 1.

Ex. Let S? € R3 be the unit sphere where:
®(6,¢) = (cos O sin ¢, sin O sin ¢, cos ¢)
0<6<2m 0<¢<m.

Parallel transport the vector < 1, 0 > at the point (O, g) along

1) Pathl:along 6 =0, p ==-—t, 0t < (to the north pole).

NS NI_

T
2
21 (around the equator).

2) Path2: along 8 =t, ¢ =

, 0t

IA




<1,0 >= B (0,2) =< 0,1,0 >

Along path 1 we have:  y4(t) = (O,g — t) ;

So we have: i) =0 Yi(t) = %— t
' yi@®) =0 yi(t) = -1

I3, =T, =cotp, TE =—(sing)(cosp), other[} =0.

k=1 v +T5(i)v/ =vt —Tv' —THLv* =0

I}, =cotp, T} =0, soweget:

vl — (cotgp)vl = 0.

Since ¢ = g — t we have:

vl — (cot (g — t))v1 =0
vl — (tan(t)) v! = 0.

v = (tan(t)) v?

vt sin(t)

vl " cos(t)

Integrating both sides we get:
In(v!) + ¢; = —In(cos(t)) + ¢,
In(v!) = —In(cos(t)) + c3

= vl(t) — e—ln(cos(t))+c3
v1(t) = ¢4 sec(t).
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V(0) =< v1(0),v%(0) > =< 1,0 >, so we have:
1 =v%(0) = ¢, sec(0) = ¢, and

v1(t) = sec(t).

k=2 V2 + I5(yi)v) = v* = T4 v —THv? = 0.

But ['4, = T'4, = 0, so we have:

v2=0 = vt =c.
v2(0)=0 = v3(t) =0.

Thus the parallel vector field in the basis {69, 5(,5} is:
V(t) = <sec(t),0 >.

In R3 this becomes:

V(t) = <sec(t),0>= (sec(t))afg (t)

= (sec(t))(< —sin(8)(sin(¢)), cos(O) (sin(¢)),0 >.

6=0, p=5-t
V(t) = (sec(t))(< 0,cos(0) (sin (g — t)) ,0>)
= (sec(t))(< 0,cos(t),0 >=<0,1,0 >ps.

So with respect to the standard basis in R3 we have:

V() =<0,1,0 >.
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Along path 2 we have:
T T T
o=t ¢=7; 0 n()=(t3) = vk =t o =3
yz =1 yi = 0.

k=1 v+ T5(yi)v/ = v + Tt + Thv? = 0;

T

Flll == 0, Fllz == COt(].'), but d) ==

= v1=0 = vi(t)=c.
Butvl(0) =1so vi(t) = 1.
k=2 v? + I5(yi)v/ = v* —THv! —THv? = 0.

Iy = —(sing)(cosd), 5 =0.

v2 — (sing)(cosp) = 0.

But ¢ =§ socos¢p = 0.

2=0 = v%(t)=c
v2(0)=0 = v2(t) =0.

Thus we have in the basis {69, 3(1,}:
V(t) =< 1,0 >.
In the standard basis for R3 we have:

V(t) =< 1,0 >= $y(t)

=< —sin(0) (sin(¢)), cos(@) (sin(¢)),0 >
=< —sin(t),cos(t),0 >.

> socotgp = 0.
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