
1 
 

Connections and Covariant Differentiation 
 
We saw an example earlier of a vector field being a contravariant vector. This              

is true in general for vector fields on a manifold. Let 𝜒(𝑀) be the space of all 

smooth vector fields on an 𝑛-dimensional manifold, 𝑀. If 𝑋 ∈ 𝜒(𝑀), then in local 

coordinates 𝑥1, … , 𝑥𝑛 we can write: 
 

𝑋 = ∑𝐴𝑖(𝑥)
𝜕

𝜕𝑥𝑖
 .

𝑛

𝑖=1

 

 

Recall that if Φ⃗⃗⃗ : 𝑈 ⊆ ℝ𝑛 → 𝑀 ⊆ ℝ𝑘, then 
𝜕

𝜕𝑥𝑖 means 
𝜕Φ⃗⃗⃗ 

𝜕𝑥𝑖. 
 

If 𝑥̅1, … , 𝑥̅𝑛 are another set of local coordinates, then by the Chain Rule we can 
write: 

𝜕

𝜕𝑥𝑖
= ∑ 

𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝑛

𝑗=1

𝜕

𝜕𝑥̅𝑗
= 

𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝜕

𝜕𝑥̅𝑗
 

 
Thus: 

 

𝑋 = ∑𝐴𝑖(𝑥)
𝜕

𝜕𝑥𝑖

𝑛

𝑖=1

= ∑∑𝐴𝑖

𝑛

𝑗=1

𝑛

𝑖=1

 
𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝜕

𝜕𝑥̅𝑗
= ∑(∑𝐴𝑖

𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝑛

𝑖=1

)

𝑛

𝑗=1

𝜕

𝜕𝑥̅𝑗
 

 
So we know: 
 

𝐴̅𝑗 = ∑𝐴𝑖
𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝑛

𝑖=1

 

 
and 𝑋 is a contravariant vector. 
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However, what happens if we differentiate a vector field? Is that also a tensor?  
 
 We know that a vector field: 

 

𝑋 = ∑𝐴𝑖(𝑥)
𝜕

𝜕𝑥𝑖

𝑛

𝑖=1

 

 
is a contravariant vector, so if we change coordinates we get: 

 
                         

𝐴̅𝑗(𝑥̅) = ∑𝐴𝑖
𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝑛

𝑖=1

= 𝐴𝑖
𝜕𝑥̅𝑗

𝜕𝑥𝑖
 

 

Now let’s differentiate this equation with respect to 𝑥̅𝑘 . 
 

 

𝜕𝐴̅𝑗

𝜕𝑥̅𝑘
= 𝐴𝑖

𝜕

𝜕𝑥̅𝑘
(
𝜕𝑥̅𝑗

𝜕𝑥𝑖
) +

𝜕𝑥̅𝑗

𝜕𝑥𝑖
 
𝜕𝐴𝑖

𝜕𝑥̅𝑘
 

 
 

Applying the Chain Rule to 
𝜕

𝜕𝑥̅𝑘 (
𝜕𝑥̅𝑗

𝜕𝑥𝑖) and 
𝜕𝐴𝑖

𝜕𝑥̅𝑘 we get: 

 

𝜕𝐴̅𝑗

𝜕𝑥̅𝑘
= 𝐴𝑖

𝜕2𝑥̅𝑗

𝜕𝑥𝑙𝜕𝑥𝑖
 
𝜕𝑥𝑙

𝜕𝑥̅𝑘
+

𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝜕𝐴𝑖

𝜕𝑥𝑙

𝜕𝑥𝑙

𝜕𝑥̅𝑘
 

 
 

   
𝜕𝐴̅𝑗

𝜕𝑥̅𝑘
= 𝐴𝑖

𝜕2𝑥̅𝑗

𝜕𝑥𝑙𝜕𝑥𝑖
 
𝜕𝑥𝑙

𝜕𝑥̅𝑘
+

𝜕𝑥̅𝑗

𝜕𝑥𝑖

𝜕𝑥𝑙

𝜕𝑥̅𝑘

𝜕𝐴𝑖

𝜕𝑥𝑙
 . 
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The first term on the right hand side shows us that {
𝜕𝐴̅𝑗

𝜕𝑥̅𝑘} is not a tensor unless    

𝜕2𝑥̅𝑗

𝜕𝑥𝑙𝜕𝑥𝑖 = 0   for all    𝑗, 𝑙, 𝑖 = 1,… , 𝑛. 

 
 
We would like to have a notion of a derivative of a tensor that is also a tensor.        
This leads us to the idea of connections and covariant derivatives. 

 
Def.   Let 𝑀 be a smooth manifold and let 𝜒(𝑀) be the space of smooth vector 

fields on 𝑀. A connection on the tangent bundle, 𝑇𝑀, is a map: 
∇: 𝜒(𝑀)  ×  𝜒(𝑀) → 𝜒(𝑀) 

 
written ∇𝑋𝑌, instead of ∇(𝑋, 𝑌), that satisfies the following: 

 
1) For all 𝑌 ∈ 𝜒(𝑀), ∇( __ , 𝑌) is linear over 𝐶∞(𝑀), i.e. for all  

𝑓, 𝑔 ∈ 𝐶∞(𝑀): 
 

∇(𝑓𝑋1+𝑔𝑋2)𝑌 = 𝑓(∇𝑋1
𝑌) + 𝑔(∇𝑋2

𝑌) 

 
2) For all vector fields 𝑋 ∈ 𝜒(𝑀), ∇(𝑋, __ ) is linear over ℝ, i.e. for all     

𝑎, 𝑏 ∈ ℝ: 
 

∇𝑋(𝑎𝑌1 + 𝑏𝑌2) = 𝑎(∇𝑋𝑌1) + 𝑏(∇𝑋𝑌2) 
 

3) For all vector fields 𝑋 ∈ 𝜒(𝑀), ∇( 𝑋, __ ) satisfies the Product Rule: 
 

∇𝑋(𝑓𝑌) = (𝑋𝑓)𝑌 + 𝑓(∇𝑋𝑌) 
 

  

                    for all 𝑓 ∈ 𝐶∞(𝑀). 
 
The vector field ∇𝑋𝑌 is called the covariant derivative of 𝑌 in the direction of 𝑋. 
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Earlier we defined the directional derivative of a real valued function, 𝑓,         
in the direction of a vector. The covariant derivative of a vector field, 𝑌, in the 
direction of 𝑋 at a point 𝑝 ∈ 𝑀, ∇𝑋𝑌|𝑝, is really the directional derivative of 𝑌      

at point 𝑝 in the direction 𝑋𝑝.  

 
Thus, a covariant derivative of a vector field is a generalization of the 

directional derivative of a real valued function. We will say ∇𝑋𝑓 = 𝑋(𝑓),             
i.e. the covariant derivative of a function 𝑓:𝑀 → ℝ in the direction of                  
𝑋 ∈ 𝜒(𝑀) is the directional derivative of 𝑓 in the direction of 𝑋. 
 

Over a coordinate patch 𝑈 ⊆ 𝑀, ∇ is completely determined once we      

know the values for 𝑋 = 𝜕𝑖 = 
𝜕

𝜕𝑥𝑖  and  𝑌 = 𝜕𝑗 = 
𝜕

𝜕𝑥𝑗  .  Since ∇𝜕𝑖
(𝜕𝑗) is a 

vector field on 𝑀, we can write: 
 

∇𝜕𝑖
(𝜕𝑗) = Γ𝑖𝑗

𝑘𝜕𝑘 = ∑ Γ𝑖𝑗
𝑘

𝑛

𝑘=1

𝜕𝑘  . 

 
 

The components of this vector field, Γ𝑖𝑗
𝑘 , are smooth real valued functions on 𝑀.  

∇𝜕𝑖
(𝜕𝑗) is the projection of 

𝜕

𝜕𝑥𝑖 (
𝜕Φ⃗⃗⃗ 

𝜕𝑥𝑗) on to the tangent space spanned by 

{
𝜕Φ⃗⃗⃗ 

𝜕𝑥1 , … ,
𝜕Φ⃗⃗⃗ 

𝜕𝑥𝑛}. 

 
 
 
 

Def.   The functions Γ𝑖𝑗
𝑘  are called the Christoffel symbols (or the Christoffel 

            symbols of the second kind) of the connection ∇. 
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By using the properties of a connection ∇ in its definition we can now           

find a formula for ∇𝑋𝑌 on a coordinate patch, 𝑈 ⊆ 𝑀, in terms of the     

components of 𝑋, 𝑌 and the Christoffel symbols Γ𝑖𝑗
𝑘 . 

 
 
 
Ex.  Let  𝑥1, … , 𝑥𝑛 be local coordinates on 𝑈 ⊆ 𝑀 and: 

𝑋 = ∑𝑋𝑖

𝑛

𝑖=1

𝜕𝑖         𝑌 = ∑𝑌𝑗

𝑛

𝑗=1

𝜕𝑗  

Find ∇𝑋𝑌. 
 

∇𝑋𝑌 = ∇𝑋𝑖𝜕𝑖
(𝑌𝑗𝜕𝑗) 

 

                                        = [𝑋𝑖𝜕𝑖(𝑌
𝑗)]𝜕𝑗 + 𝑌𝑗∇𝑋𝑖𝜕𝑖

(𝜕𝑗)           by Property #3 
 

                                       = [𝑋𝑖𝜕𝑖(𝑌
𝑗)]𝜕𝑗 + 𝑌𝑗𝑋𝑖∇𝜕𝑖

(𝜕𝑗)          by Property #1 
 

= [𝑋𝑖𝜕𝑖(𝑌
𝑗)]𝜕𝑗 + 𝑌𝑗𝑋𝑖(Γ𝑖𝑗

𝑘𝜕𝑘) 

 
 

Now switch the roll of 𝑗 and 𝑘 in the second term: 
 

     = [𝑋𝑖𝜕𝑖(𝑌
𝑗)]𝜕𝑗 + 𝑌𝑘𝑋𝑖(Γ𝑖𝑘

𝑗
𝜕𝑗) 

 

                                ∇𝑋𝑌 = (𝑋𝑖𝜕𝑖(𝑌
𝑗) + 𝑌𝑘𝑋𝑖(Γ𝑖𝑘

𝑗
)) 𝜕𝑗 . 

 
 

 

In particular if 𝑋 = 𝜕𝑡 = 
𝜕

𝜕𝑥𝑡  , then we have: 
 

                              ∇𝜕𝑡
𝑌 = (

𝜕

𝜕𝑥𝑡 (𝑌
𝑗) + Γ𝑡𝑘

𝑗
𝑌𝑘) 𝜕𝑗 .  
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Def.   We call the (1, 1) tensor with components:   

         ∇𝑌 = (
𝜕

𝜕𝑥𝑡 (𝑌
𝑗) + Γ𝑡𝑘

𝑗
𝑌𝑘)  

the covariant derivative of the (1, 0) tensor 𝑌. 
 

 
So if we have a local coordinate system 𝑈 ⊆ 𝑀, (𝑥1, … , 𝑥𝑛), when        

taking the covariant derivative of a vector field 𝑌, we differentiate each component 

𝑌𝑗 with respect to 𝑥𝑡 but then add a second term, Γ𝑡𝑘
𝑗
𝑌𝑘, where: 

Γ𝑡𝑘
𝑗
𝜕𝑗 = ∇𝜕𝑡

(𝜕𝑘). 

 
 

Where did this second term come from? In other words, why isn’t the             

derivative of 𝑌 equal to (
𝜕𝑌𝑗

𝜕𝑥𝑡) as it was in second year calculus? 

 
The “problem” we have with a vector field on a general smooth manifold is             

that the basis of the tangent space is also a function of (𝑥1, … , 𝑥𝑛) (the basis of 
𝑇𝑝(ℝ

𝑛) is 𝑒 1, … , 𝑒 𝑛 for every point 𝑝). The covariant derivative of a vector field     

is measuring the rate of change of the components of the vector field, (
𝜕𝑌𝑗

𝜕𝑥𝑡), as 

well as the rate of change of the basis of the tangent space, Γ𝑡𝑘
𝑗
𝑌𝑘 . 

 
 
 
Ex.  Suppose the surface 𝑆 ⊆ ℝ3 is given by: 

Φ⃗⃗⃗ (𝑥1, 𝑥2) = (𝑥1, 𝑥2, (𝑥1)2 + (𝑥2)2).  

 

       Then a basis for the tangent space at Φ⃗⃗⃗ (𝑥1, 𝑥2) is given by: 
 

Φ⃗⃗⃗ 𝑥1 = (1, 0, 2𝑥1)        Φ⃗⃗⃗ 𝑥2 = (0, 1, 2𝑥2). 
 

  

             So the basis changes as Φ⃗⃗⃗ (𝑥1, 𝑥2) changes. 
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In general, if we have a vector field 𝑌 = 𝑌𝑖𝜕𝑖, where 𝜕𝑖 = 
𝜕Φ⃗⃗⃗ 

𝜕𝑥𝑖 , then  

 
𝜕𝑌

𝜕𝑥𝑘 =
𝜕

𝜕𝑥𝑘 (𝑌𝑖𝜕𝑖) =
𝜕𝑌𝑖

𝜕𝑥𝑘 𝜕𝑖 + 𝑌𝑖 𝜕

𝜕𝑥𝑘
(𝜕𝑖)  

 

                                 =
𝜕𝑌𝑖

𝜕𝑥𝑘 𝜕𝑖 + 𝑌𝑖Γ𝑖𝑘
𝑗
𝜕𝑗  .   

 
 

Now reindex the second term by interchanging 𝑖 and 𝑗. 
 

                               
𝜕𝑌

𝜕𝑥𝑘 =
𝜕𝑌𝑖

𝜕𝑥𝑘 𝜕𝑖 + 𝑌𝑗Γ𝑗𝑘
𝑖 𝜕𝑖  

 

                                
𝜕𝑌

𝜕𝑥𝑘 = (
𝜕𝑌𝑖

𝜕𝑥𝑘 + 𝑌𝑗Γ𝑗𝑘
𝑖 ) 𝜕𝑖  . 

 
 

Ex.  If we take a vector field on ℝ𝑛 where: 

𝑓 (𝑥1, … , 𝑥𝑛) = < 𝑓1(𝑥1, … , 𝑥𝑛), … , 𝑓𝑛(𝑥1, … , 𝑥𝑛) > 
and 𝜕𝑖 = 𝑒 𝑖 = < 0,… , 1, … , 0 >, the standard basis on ℝ𝑛, then: 

 

𝑓 (𝑥1, … , 𝑥𝑛) = 𝑓𝑗𝜕𝑗   and ∇𝜕𝑖
𝑓 =

𝜕𝑓𝑗

𝜕𝑥𝑖 𝜕𝑗  .    

 

 In this case, ∇𝜕𝑖
𝑓 , is just the usual partial derivative of a vector field on         

ℝ𝑛 (i.e. the derivative of a vector field that one learns in second year calculus).   
Here, all of the Christoffel symbols are equal to 0. 
 

Notice: In the example above, the covariant derivative ∇𝑓  is just the      

Jacobian of 𝑓 . That is, the components of ∇𝑓  are (
𝜕𝑓𝑖

𝜕𝑥𝑗). 
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So far we have a definition for the covariant derivative of a (1, 0) tensor, with 

components 𝑌𝑖, whose components we can write as: 
 

𝑌;𝑘
𝑖 =

𝜕𝑌𝑖

𝜕𝑥𝑘 + Γ𝑘𝑗
𝑖 𝑌𝑗 .  

 
 
In general, if 𝐹 is an (𝑟, 𝑠) tensor over a manifold, 𝑀, and has components     

𝐹𝑗1…𝑗𝑠

𝑖1…𝑖𝑟 over a coordinate chart 𝑈, then the components of the covariant     

derivative of 𝐹, ∇𝐹, are: 
 

𝐹𝑗1…𝑗𝑠;𝑘
𝑖1…𝑖𝑟 =

𝜕𝐹𝑗1…𝑗𝑠

𝑖1…𝑖𝑟

𝜕𝑥𝑘
+ ∑ Γ𝑘𝑝

𝑖𝛼

𝑟

𝛼=1

𝐹𝑗1…𝑗𝑠

𝑖1…𝑖𝛼−1𝑝𝑖𝛼+1…𝑖𝑟 − ∑ Γ𝑘𝑗𝛽

𝑝
𝐹𝑗1…𝑗𝛽−1𝑝𝑗𝛽+1…𝑗𝑠

𝑖1……𝑖𝑟

𝑠

𝛽=1

 

 
 ∇𝐹 is an (𝑟, 𝑠 + 1 ) tensor. 
 
 
 

Ex.  If 𝐹 is a (2, 1) tensor with components 𝐹𝑘
𝑖𝑗

, then ∇𝐹 is a (2, 2) tensor         

with components: 
 

𝐹𝑘 ; 𝑙
𝑖𝑗

=
𝜕𝐹𝑘

𝑖𝑗

𝜕𝑥𝑙
+ Γ𝑙𝑝

𝑖 𝐹𝑘
𝑝𝑗

+ Γ𝑙𝑝
𝑗
𝐹𝑘

𝑖𝑝
− Γ𝑙𝑘

𝑝
𝐹𝑝

𝑖𝑗
 . 
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We now state a few results whose proofs can be found in the appendix to 

Connections and Covariant Differentiation. 
 

Γ𝑖𝑗
𝑘  is not a tensor, but how do the components change under a change of 

coordinates? 
 
 
Proposition:   

Let 𝑈 and 𝑈 be overlapping coordinate patches on a manifold, 𝑀, with 

            local coordinates (𝑥1, … , 𝑥𝑛) and (𝑥̅1, … , 𝑥̅𝑛) respectively, then 

Γ̅𝑖𝑗
𝑘 =

𝜕𝑥𝑟

𝜕𝑥̅𝑗
 
𝜕𝑥𝑙

𝜕𝑥̅𝑖
 
𝜕𝑥̅𝑘

𝜕𝑥𝑚
 Γ𝑙𝑟

𝑚 +
𝜕2𝑥𝑚

𝜕𝑥̅𝑖  𝜕𝑥̅𝑗

𝜕𝑥̅𝑘

𝜕𝑥𝑚
 

 
Proof (see appendix). 
 
 

Proposition:   𝑇𝑖 ;𝑘 =
𝜕𝑇𝑖

𝜕𝑥𝑘 − Γ𝑖𝑘
𝑗
𝑇𝑗  are the components of a (0, 2) tensor. 

 
Proof (see appendix). 
 
 
Levi-Civita Theorem:   

Let (𝑀, 𝑔) be a Riemannian manifold. There exists a unique connection ∇ 
     that satisfies the following: 
 

1) ∇𝑔 = 0 
2) For all 𝑋, 𝑌 ∈ 𝜒(𝑀), [𝑋, 𝑌] = ∇𝑋𝑌 − ∇𝑌𝑋. 

 
Proof  (see appendix). 
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Proposition:  Let (𝑀, 𝑔) be a smooth manifold. Then, over a coordinate             
patch 𝑈 ⊆ 𝑀 with local coordinates (𝑥1, … , 𝑥𝑛) the Christoffel symbols of          
the Levi-Civita connection are given by 
 

Γ𝑗𝑘
𝑖 = ∑

1

2
𝑔𝑖𝑙 (

𝜕𝑔𝑘𝑙

𝜕𝑥𝑗
+

𝜕𝑔𝑙𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑙
)

𝑛

𝑙=1

 

 

 where 𝑔𝑖𝑗 are the entries to the inverse matrix (𝑔𝑘𝑙). 
 
Proof  (see appendix). 
 

 
 
 
 

Ex.  Using the formula for Γ𝑗𝑘
𝑖  in terms of the metric 𝑔, show: Γ𝑗𝑘

𝑖 = Γ𝑘𝑗
𝑖  . 

 
 

Γ𝑗𝑘
𝑖 = ∑

1

2
𝑔𝑖𝑙

𝑛

𝑙=1

(
𝜕𝑔𝑘𝑙

𝜕𝑥𝑗
+

𝜕𝑔𝑙𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑙
) 

 

Γ𝑘𝑗
𝑖 = ∑

1

2
𝑔𝑖𝑙

𝑛

𝑙=1

(
𝜕𝑔𝑗𝑙

𝜕𝑥𝑘
+

𝜕𝑔𝑙𝑘

𝜕𝑥𝑗
−

𝜕𝑔𝑘𝑗

𝜕𝑥𝑙
) 

 

These two expressions are equal because 𝑔𝛼𝛽 = 𝑔𝛽𝛼. 
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Ex.  Using the formula for Γ𝑗𝑘
𝑖  in terms of the metric 𝑔, show that: 

∇𝑘𝑔𝑖𝑗 = 𝑔𝑖𝑗;𝑘 = 0. 

 
 

  𝑔𝑖𝑗;𝑘 =
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘 − Γ𝑖𝑘
𝑝
𝑔𝑝𝑗 − Γ𝑗𝑘

𝑝
𝑔𝑖𝑝     

 
 

=
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
−

1

2
∑𝑔𝑝𝑗  𝑔

𝑝𝑙

𝑛

𝑙=1

(
𝜕𝑔𝑘𝑙

𝜕𝑥𝑖
+

𝜕𝑔𝑙𝑖

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝑙
)

−
1

2
∑𝑔𝑖𝑝 𝑔

𝑝𝑙

𝑛

𝑙=1

(
𝜕𝑔𝑘𝑙

𝜕𝑥𝑗
+

𝜕𝑔𝑙𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑙
) 

 
 

=
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
−

1

2
∑𝛿𝑗

𝑙

𝑛

𝑙=1

(
𝜕𝑔𝑘𝑙

𝜕𝑥𝑖
+

𝜕𝑔𝑙𝑖

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝑙
) −

1

2
∑𝛿𝑖

𝑙

𝑛

𝑙=1

(
𝜕𝑔𝑘𝑙

𝜕𝑥𝑗
+

𝜕𝑔𝑙𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑙
) 

 
 

=
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
−

1

2
(
𝜕𝑔𝑘𝑗

𝜕𝑥𝑖
+

𝜕𝑔𝑗𝑖

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
) −

1

2
(
𝜕𝑔𝑘𝑖

𝜕𝑥𝑗
+

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑖
). 

 
Since 𝑔𝛼𝛽 = 𝑔𝛽𝛼, we have: 

𝑔𝑖𝑗;𝑘 =
𝜕𝑔

𝑖𝑗

𝜕𝑥𝑘
−

𝜕𝑔
𝑖𝑗

𝜕𝑥𝑘
= 0. 
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Ex.  Let 𝑔 be the metric on ℝ2 induced by Φ⃗⃗⃗ (𝑥1, 𝑥2) = (𝑥1𝑐𝑜𝑠𝑥2,  𝑥1𝑠𝑖𝑛𝑥2).   
 Find the eight Christoffel symbols directly from the metric 𝑔. Given the vector field 

 𝑉 = 𝑥2Φ⃗⃗⃗ 𝑥1 − 𝑥1Φ⃗⃗⃗ 𝑥2 =< 𝑥2, −𝑥1 >, find the components of ∇𝑉. 
 
 

Φ⃗⃗⃗ 𝑥1 =< 𝑐𝑜𝑠𝑥2, 𝑠𝑖𝑛𝑥2 > ,       Φ⃗⃗⃗ 𝑥2 =< −𝑥1𝑠𝑖𝑛𝑥2, 𝑥1𝑐𝑜𝑠𝑥2 > 
 

𝑔11 = Φ⃗⃗⃗ 𝑥1 ∙ Φ⃗⃗⃗ 𝑥1 = 1 ;          𝑔12 = 𝑔21 = Φ⃗⃗⃗ 𝑥1 ∙ Φ⃗⃗⃗ 𝑥2 = 0 ;   
 

𝑔22 = Φ⃗⃗⃗ 𝑥2 ∙ Φ⃗⃗⃗ 𝑥2 = (𝑥1)2  
 

So we have:        (𝑔𝑖𝑗) = (
1 0
0 (𝑥1)2

)   and     (𝑔𝑖𝑗) = (
1 0

0
1

(𝑥1)
2
).   

 
 

Γ𝑗𝑘
𝑖 = ∑

1

2
𝑔𝑖𝑙𝑛

𝑙=1 (
𝜕𝑔𝑘𝑙

𝜕𝑥𝑗 +
𝜕𝑔𝑙𝑗

𝜕𝑥𝑘 −
𝜕𝑔𝑗𝑘

𝜕𝑥𝑙 )  

 

But the only non-zero derivative of 𝑔𝑖𝑗 is 
𝜕𝑔22

𝜕𝑥1 = 2𝑥1.     

 

The only Γ𝑗𝑘
𝑖  that include 

𝜕𝑔22

𝜕𝑥1   are  Γ21
1 = Γ12

1 ,  Γ22
1 ,  Γ21

2 = Γ12
2  and Γ22

2 .  
 
 

Γ21
1 = Γ12

1 = ∑
1

2
𝑔1𝑙2

𝑙=1 (
𝜕𝑔2𝑙

𝜕𝑥1 +
𝜕𝑔𝑙1

𝜕𝑥2 −
𝜕𝑔12

𝜕𝑥𝑙 ) = 0;      since  𝑔12 = 0   

 

Γ22
1 = ∑

1

2
𝑔1𝑙2

𝑙=1 (
𝜕𝑔2𝑙

𝜕𝑥2 +
𝜕𝑔𝑙2

𝜕𝑥2 −
𝜕𝑔22

𝜕𝑥𝑙 ) =
1

2
(𝑔11) (−

𝜕𝑔22

𝜕𝑥1 ) = −𝑥1  

 

Γ21
2 = Γ12

2 = ∑
1

2
𝑔2𝑙2

𝑙=1 (
𝜕𝑔2𝑙

𝜕𝑥1 +
𝜕𝑔𝑙1

𝜕𝑥2 −
𝜕𝑔12

𝜕𝑥𝑙 ) =
1

2
(𝑔22)( 

𝜕𝑔22

𝜕𝑥1 ) =
1

𝑥1    

Γ22
2 = ∑

1

2
𝑔2𝑙2

𝑙=1 (
𝜕𝑔2𝑙

𝜕𝑥2 +
𝜕𝑔𝑙2

𝜕𝑥2 −
𝜕𝑔22

𝜕𝑥𝑙 ) = 0;                  since 𝑔21 = 0.     

All other Γ𝑗𝑘
𝑖 = 0. 
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∇𝑘𝑉
𝑖 =

𝜕𝑉𝑖

𝜕𝑥𝑘 + Γ𝑗𝑘
𝑖 𝑉𝑗  ;  where  𝑉 =< 𝑥2, −𝑥1 >=< 𝑉1, 𝑉2 >. 

 
If we call 𝑇 = ∇𝑉 then we have:  

 

𝑇1
1 = ∇1𝑉

1 =
𝜕𝑉1

𝜕𝑥1 + Γ𝑗1
1𝑉𝑗 = 0   

 

𝑇2
1 = ∇2𝑉

1 =
𝜕𝑉1

𝜕𝑥2 + Γ𝑗2
1𝑉𝑗 = 1 + Γ22

1 𝑉2 = 1 + (𝑥1)2     

 

𝑇1
2 = ∇1𝑉

2 =
𝜕𝑉2

𝜕𝑥1 + Γ𝑗1
2𝑉𝑗 = −1 + Γ21

2 𝑉2 = −1 + (
1

𝑥1) (−𝑥1) = −2.  

   

𝑇2
2 = ∇2𝑉

2 =
𝜕𝑉2

𝜕𝑥2 + Γ𝑗2
2𝑉𝑗 = Γ12

2 𝑉1 = (
1

𝑥1)(𝑥
2) .   

 
 
     Using the fact that the covariant derivative of a contravariant vector is                 
just the projection of the usual derivative onto the tangent space we have       

another way to calculate the Christoffel symbols. 
 
Ex.  Let 𝑆2 ⊆ ℝ3 be the unit sphere where: 
 

Φ⃗⃗⃗ (𝑥1, 𝑥2) = (cos 𝑥1 sin 𝑥2 , sin 𝑥1 sin 𝑥2 , cos 𝑥2)   
 

 0 ≤ 𝑥1 ≤ 2𝜋 ,   0 ≤ 𝑥2 ≤ 𝜋. 
      

            We know that  ∇𝜕𝑖
(𝜕𝑗) = ∑ Γ𝑖𝑗

𝑘𝑛
𝑘=1 𝜕𝑘. 

 

    Use the fact that the coefficient of the projection of  Φ⃗⃗⃗ 𝑥𝑖𝑥𝑗  on to                 

    Φ⃗⃗⃗ 𝑥𝑘 = 𝜕𝑘  is Γ𝑖𝑗
𝑘  to show that the Christoffel symbols are 

     Γ21
1 = Γ12

1 = 𝑐𝑜𝑡𝑥2,   Γ11
2 = −(𝑠𝑖𝑛𝑥2)(𝑐𝑜𝑠𝑥2),    Γ𝑖𝑗

𝑘 =  0 otherwise. 

     (For HW you need to do this calculation with the formula for Γ𝑖𝑗
𝑘  in terms of    

       the metric). 
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      𝜕1 = Φ⃗⃗⃗ 𝑥1 =< −(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2, (𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2, 0 >;   

      𝜕2 = Φ⃗⃗⃗ 𝑥2 =< (𝑐𝑜𝑠𝑥1)𝑐𝑜𝑠𝑥2, (𝑠𝑖𝑛𝑥1)𝑐𝑜𝑠𝑥2, −𝑠𝑖𝑛𝑥2 > 
 

      Φ⃗⃗⃗ 𝑥1 ∙ Φ⃗⃗⃗ 𝑥1 = sin2 𝑥2 

      Φ⃗⃗⃗ 𝑥2 ∙ Φ⃗⃗⃗ 𝑥2 = 1 
 

      Φ⃗⃗⃗ 𝑥1𝑥1 =< −(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2, −(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2, 0 > 

      Φ⃗⃗⃗ 𝑥1𝑥2 =< −(𝑠𝑖𝑛𝑥1)𝑐𝑜𝑠𝑥2, (𝑐𝑜𝑠𝑥1)𝑐𝑜𝑠𝑥2, 0 > 

      Φ⃗⃗⃗ 𝑥2𝑥2 =< −(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2, −(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2, −𝑐𝑜𝑠𝑥2 > 
 
      Recall from 2nd year calculus that the projection of a vector 𝑤⃗⃗  onto a 

      vector 𝑣   is given by:    𝑃𝑟𝑜𝑗𝑣⃗ 𝑤⃗⃗ = (
𝑣⃗ ∙𝑤⃗⃗ 

𝑣⃗ ∙𝑣⃗ 
)𝑣 . 

 
 
 

     ∇𝜕1
(𝜕1) = ∑ Γ11

𝑘𝑛
𝑘=1 𝜕𝑘 = Γ11

1 𝜕1 + Γ11
2 𝜕2 

 

Γ11
1 =

Φ⃗⃗⃗ 
𝑥1𝑥1∙Φ⃗⃗⃗ 

𝑥1

Φ⃗⃗⃗ 𝑥1∙Φ⃗⃗⃗ 𝑥1
  

 

=
< −(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2, −(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2, 0 >∙< −(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2, (𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2, 0 > 

sin2 𝑥2
 

 = 0 
 

 Γ11
2 =

Φ⃗⃗⃗ 
𝑥1𝑥1∙Φ⃗⃗⃗ 

𝑥2

Φ⃗⃗⃗ 𝑥2∙Φ⃗⃗⃗ 𝑥2
     

 

   =
<−(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2,−(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2,0>∙<(𝑐𝑜𝑠𝑥1)𝑐𝑜𝑠𝑥2,(𝑠𝑖𝑛𝑥1)𝑐𝑜𝑠𝑥2,−𝑠𝑖𝑛𝑥2>

1
 

   

   = −(𝑠𝑖𝑛𝑥2)𝑐𝑜𝑠𝑥2 
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        ∇𝜕2
(𝜕1) = ∑ Γ21

𝑘𝑛
𝑘=1 𝜕𝑘 = Γ21

1 𝜕1 + Γ21
2 𝜕2  

 

        Γ21
1 = Γ12

1 =
Φ⃗⃗⃗ 

𝑥1𝑥2∙Φ⃗⃗⃗ 
𝑥1

Φ⃗⃗⃗ 𝑥1∙Φ⃗⃗⃗ 𝑥1
  

 

       =
<−(𝑠𝑖𝑛𝑥1)𝑐𝑜𝑠𝑥2,(𝑐𝑜𝑠𝑥1)𝑐𝑜𝑠𝑥2,0>∙<−(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2,(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2,0>

sin2 𝑥2  
        

            =
(𝑐𝑜𝑠𝑥2)𝑠𝑖𝑛𝑥2

sin2 𝑥2
= 𝑐𝑜𝑡𝑥2  

 

        

       Γ21
2 = Γ12

2 =
Φ⃗⃗⃗ 

𝑥1𝑥2∙Φ⃗⃗⃗ 
𝑥2

Φ⃗⃗⃗ 𝑥2∙Φ⃗⃗⃗ 𝑥2
  

 

        =
<−(𝑠𝑖𝑛𝑥1)𝑐𝑜𝑠𝑥2,(𝑐𝑜𝑠𝑥1)𝑐𝑜𝑠𝑥2,0>∙<(𝑐𝑜𝑠𝑥1)𝑐𝑜𝑠𝑥2,(𝑠𝑖𝑛𝑥1)𝑐𝑜𝑠𝑥2,−𝑠𝑖𝑛𝑥2>

1
 

        

               = 0 
 

              ∇𝜕2
(𝜕2) = ∑ Γ22

𝑘𝑛
𝑘=1 𝜕𝑘 = Γ22

1 𝜕1 + Γ22
2 𝜕2  

 

        Γ22
1 =

Φ⃗⃗⃗ 
𝑥2𝑥2∙Φ⃗⃗⃗ 

𝑥1

Φ⃗⃗⃗ 𝑥1 ∙Φ⃗⃗⃗ 𝑥1
  

 

         =
<−(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2,−(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2,−𝑐𝑜𝑠𝑥2>∙<−(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2,(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2,0>

sin2 𝑥2  
          

               = 0.  

 

 

         Γ22
2 =

Φ⃗⃗⃗ 
𝑥2𝑥2∙Φ⃗⃗⃗ 

𝑥2

Φ⃗⃗⃗ 𝑥2 ∙Φ⃗⃗⃗ 𝑥2
   

 

       =
<−(𝑐𝑜𝑠𝑥1)𝑠𝑖𝑛𝑥2,−(𝑠𝑖𝑛𝑥1)𝑠𝑖𝑛𝑥2,−𝑐𝑜𝑠𝑥2>∙<(𝑐𝑜𝑠𝑥1)𝑐𝑜𝑠𝑥2,(𝑠𝑖𝑛𝑥1)𝑐𝑜𝑠𝑥2,−𝑠𝑖𝑛𝑥2>

1
 

       

             = 0. 


