Connections and Covariant Differentiation

We saw an example earlier of a vector field being a contravariant vector. This

is true in general for vector fields on a manifold. Let Y (M) be the space of all
smooth vector fields on an n-dimensional manifold, M. If X € y(M), then in local
coordinates x1, ..., x™ we can write:
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Recall thatif ®: U € R™ - M € RX, then 5. Means —.
If 9?1, ..., X" are another set of local coordinates, then by the Chain Rule we can
write:
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So we know:
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and X is a contravariant vector.



However, what happens if we differentiate a vector field? Is that also a tensor?

We know that a vector field:

n
X = Z Al(.'Xf) F
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is a contravariant vector, so if we change coordinates we get:
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Now let’s differentiate this equation with respect to ik,
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The first term on the right hand side shows us that {ﬁ} is not a tensor unless
92x/

dxloxt

=0 forall j,l,i=1,..,n.
We would like to have a notion of a derivative of a tensor that is also a tensor.
This leads us to the idea of connections and covariant derivatives.

Def. Let M be a smooth manifold and let Yy (M) be the space of smooth vector
fields on M. A connection on the tangent bundle, T M, is a map:

Vix(M) X x(M) - x(M)
written VY, instead of V(X,Y), that satisfies the following:

1) ForallY € y(M),V(_,Y) islinear over C* (M), i.e. forall
f,g € C*(M):

V(fX1+gX2)Y = f(VX1Y) + g(sz Y)

2) For all vector fields X € y(M),V(X, _)islinear over R, i.e. for all
a,b € R:

VX(aY1 + bYZ) - a(val) + b(VXYZ)
3) For all vector fields X € y(M), V( X, __) satisfies the Product Rule:

Vx(fY) = (XY + f(VxY)
forall f € C*(M).

The vector field Vy Y is called the covariant derivative of Y in the direction of X.



Earlier we defined the directional derivative of a real valued function, f,
in the direction of a vector. The covariant derivative of a vector field, Y, in the
direction of X ata point p € M, VY|, is really the directional derivative of Y
at point p in the direction X,.

Thus, a covariant derivative of a vector field is a generalization of the
directional derivative of a real valued function. We will say Vyx f = X(f),
i.e. the covariant derivative of a function f: M — R in the direction of
X € y(M) is the directional derivative of f in the direction of X.

Over a coordinate patch U € M, V is completely determined once we
0 0
know the values for X = 0; = =4 and Y =0; = P Since vai(aj) is a
vector field on M, we can write:

n
V,(0;) =Tf0, = Z rko
k=1

The components of this vector field, Fl]’ are smooth real valued functions on M.

Va (6 ) is the projection of ( ) on to the tangent space spanned by

oD 0P
ax1’ 7 axn)’

Def. The functions F are called the Christoffel symbols (or the Christoffel

symbols of the second kind) of the connection V.



By using the properties of a connection V in its definition we can now
find a formula for VyxY on a coordinate patch, U & M, in terms of the

components of X, Y and the Christoffel symbols Fi];-

Ex. Let x1,...,x™ be local coordinates on U € M and:

n n
X:ZXiai yzzyfaj
i=1 j=1
Find VXY
VxY = Vi, (Y/0;)
= [X10;(Y7)]0; + Y/ V,1,,(6)) by Property #3
= :Xiai(Yj): J; + YinVai(aj) by Property #1
- K,y + VX (T53.)

Now switch the roll of j and k in the second term:
= [x'0,(Y))]9; + Y*X'(T},.9))

VY = (Xi0,(v7) + YRxi(r})) ;.

0
In particular if X = d; = Py

VoY = (5 (Y)) + Tj¥*) 8.

then we have:

dOxt



Def. We call the (1, 1) tensor with components:
—_ (2 (vi J yk
VY = (5 (V) + T r*)

the covariant derivative of the (1, 0) tensor Y.

So if we have a local coordinate system U € M, (x1, ..., x™), when
taking the covariant derivative of a vector field Y, we differentiate each component

Y7 with respect to x! but then add a second term, FthYk, where:

[0 = Vy,(3).

Where did this second term come from? In other words, why isn’t the

ayJ
derivative of Y equal to (ﬁ) as it was in second year calculus?

The “problem” we have with a vector field on a general smooth manifold is
that the basis of the tangent space is also a function of (xl, ..., X™) (the basis of
T, (R™) is €4, ..., &, for every point p). The covariant derivative of a vector field

oyJ

is measuring the rate of change of the components of the vector field, (W), as

well as the rate of change of the basis of the tangent space, Ft]kYk.

Ex. Suppose the surface § € R3 is given by:
B(at,x?) = (¢, 22, (x1)? + (x2)?).

Then a basis for the tangent space at 3(361, x?) is given by:

@1 =(1,0,2x1) D =(0,1,2x2).

So the basis changes as 5(361, x?) changes.
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In general, if we have a vector field Y = Y'0;, where 9; = =i then

or
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Now reindex the second term by interchanging i and j.
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Ex. If we take a vector field on R™ where:

f(xl, e XM =< 0, L x™), L x ™) >

and9; = ¢; =<0,...,1,...,0 >, the standard basis on R", then:

- - ]
FOt, o x™) = £19; and Vo f = L5,

N
In this case, Vaif, is just the usual partial derivative of a vector field on

R™" (i.e. the derivative of a vector field that one learns in second year calculus).
Here, all of the Christoffel symbols are equal to 0.

-
Notice: In the example above, the covariant derivative Vf is just the

a i
Jacobian off That is, the components of Vf are (69]:])



So far we have a definition for the covariant derivative of a (1, 0) tensor, with
components Y, whose components we can write as:

. ayi . ,
P _ l

In general, if F is an (7, S) tensor over a manifold, M, and has components
F}llljl: over a coordinate chart U, then the components of the covariant
derivative of I, VF, are:

il...ir _ _]1 _]S la 1pla+1 . ...... r
F}1---J'sik + z F Z kjp ]1 Jp-1PJg+1--Js

VFisan (r,s + 1) tensor.

Ex. If Fisa (2, 1) tensor with components F,”, then VF is a (2, 2) tensor
with components:

ij

. oF S
U _ k pJ J pip
Ry ==+ TR + Ty, RP — T VEY



We now state a few results whose proofs can be found in the appendix to
Connections and Covariant Differentiation.

Fl-’; is not a tensor, but how do the components change under a change of
coordinates?

Proposition:
Let U and U be overlapping coordinate patches on a manifold, M, with
local coordinates (x?, ..., x™) and (i1, ..., ™) respectively, then

ox" oxt ox* __ 0%x™ 0x"

~k
- m4 ——
r " 0xi 0x) 0x™

U 9x) dxt 9xm

Proof (see appendix).

oT; ‘
Proposition: T; k= ax’lf — Fi]k’]} are the components of a (0, 2) tensor.

Proof (see appendix).

Levi-Civita Theorem:
Let (M, g) be a Riemannian manifold. There exists a unique connection V
that satisfies the following:

1) Vg =0
2) Forall X,Y € y(M), [X,Y] = VyY — VyX.

Proof (see appendix).
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Proposition: Let (M, g) be a smooth manifold. Then, over a coordinate

patch U € M with local coordinates (xl, ..., X™) the Christoffel symbols of
the Levi-Civita connection are given by

n
ri — 21 i 0 Gk aglj _ 09k
Jk L 2 0xJ axk dx!

where gij are the entries to the inverse matrix (gj;).

Proof (see appendix).

Ex. Using the formula for l_}lk in terms of the metric g, show: jlk = F,éj .

n
- Zl a (09 99y 99k
Ik L 29 \oxJ axk 0x!

il dgji + agu_c _ 0gxj
oxk = oxJ  ox!

These two expressions are equal because gop = gpqa-



Ex. Using the formula for I} jk interms of the metric g, show that:

ngu - gl];k = 0.

n
agi; 1 09k 091 09ix
_ 99 _ - - gpt (29K —
axk 2 Z 9pj 9 ( dxt T oxk  ox! )

AT (99K _I_aglj 09k
Yip dxJ/ = oxk  0Ox!

)

n n
_ d9i; _ lz 5! (agkl + a9 aglk) _ lz 0gki
dxk 2 I\ gxt = Odxk x! 2 £ dxJ

_ dgij 1[99y, N 0gji  0gix\ 1(0gx N 09i;
dxk dxt  odxk  oxJ

Since 9o = Jpa, We have:

Gij:k =

agzj _ 09k
ax"‘ dx!
_ agjk
dxJ  odxk  oxt )

11
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Ex. Let g be the metric on R? induced by 5(961,362) = (xlcosx?, x'sinx?).
Find the eight Christoffel symbols directly from the metric g. Given the vector field

V= x25x1 — x15xz =< x%,—x1 >, find the components of VV.

®,1 =< cosx?,sinx? >, @, =< -—xlsinx?, xlcosx? >

gllzcbxl'q)xlzl,' g12=921=q)x1'q)x2=0;
gzz Eﬁ 2 'E)XZ - (xl)z

- 1 0
So we have: 9ij) = (0 (1)) and (g =(o _1 )

n 1 i (agkz aglj_agjk)

Jk T al=l; axJ ~ oxk  ax!
. . 0922 _ 1
But the only non-zero derivative of g;; is —— = 2x".
0x
0
The onlyrk that include aizf are F211 = Fllz, lez, Fzzl = Flzz and Fzzz.

1 09y , 9911 _ 99 :
L, =Tk = %:15911( 21 4 %9u _ 12) =0; since g'2=0

ox1 dx2 ox!
1 w2 1 11(9 ;99 992\ _ 1, q1\(_ 992\ _ .1
[32 = 1=159 (axz + dx? oxt ) ( ) oxl ) X

2 _r2 _v2 1 2 (agzz 6911_0912) _ 1. 22y,9922 =i
I, =11 Zl=129 Py + 92 . ( (=== ax1 1
2 _ w2 1 21(99, , 99 . 9925\ _ Q.
I3 = 1=15g (axz + 0x2 oxt ) 0;

All other l_']lk = 0.

since g1 = 0.



ViVt =+ T V7 where V =< x?, —x! >=< V1 V2 >.

If we call T = VV then we have:

T =V, V! = Z—Zi+ AV =0

Ty =V,V! = g—‘; + 5V = 14T,V =14 (x')?

T? = V,V2 = g—ﬁ FTEV = —1+T3V2 = 14 () (—x) = -2.
T2 = V,V?% = g—‘; + TRV =TV = () (x?).

Using the fact that the covariant derivative of a contravariant vector is
just the projection of the usual derivative onto the tangent space we have

another way to calculate the Christoffel symbols.

Ex. Let S2 € R3 be the unit sphere where:
®(x1,x?) = (cosx!sinx?,sinx!sinx?,cos x?)
0<xl<2m, 0<x?<m.

We know that vai(aj) = Yh=1 Fi’; O
Use the fact that the coefficient of the projection of 6xixj on to
5xk = 0y is Fl-’; to show that the Christoffel symbols are
I3 =Ty = cotx?, T = —(sinx®)(cosx?), T = 0 otherwise.
(For HW you need to do this calculation with the formula for Fl-’; in terms of

the metric).
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N

0, = @1 =< —(sinx!)sinx?, (cosx!)sinx?,0 >;

d, = D2 =< (cosxt)cosx?, (sinx)cosx?, —sinx? >
— .—> 2.2

D1 P,1 =sin“x

— —

Q2P 2=1

Y 1Y i r-2 1Y i a2

d, 1,1 =< —(cosx")sinx*, —(sinx")sinx*,0 >

—_

®,1,2 =< —(sinx')cosx?, (cosx1)cosx?,0 >

—_

2,2 =< —(cosx)sinx?, —(sinx!)sinx?, —cosx?* >

Recall from 2" year calculus that the projection of a vector W onto a
- . . . —> 1_5"7; =4
vector U isgivenby: Projzw = (%)U

Val(a1) — 713:1 F1k1 Oy = F11101 + F12102

Flll — cI)xlxl'q)xl
CDx1'(Dx1

< —(cosxV)sinx?, —(sinx1)sinx?,0 >-< —(sinx1)sinx?, (cosx1)sinx?,0 >

2

sin” x?2

<—(cosx1)sinx?,—(sinx1)sinx?2,0><(cosx1)cosx?,(sinx1)cosx?,—sinx?>
1

—(sinx?)cosx?
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V (6)— "_lka —116 +126
d,\Y1 k=121 "%k 21%1 21%Y2

—

Fl _ Fl _ x1x2 Pyl
21 — 12 T = &
D 1D 1

X X

_ <—(sinx)cosx?,(cosx*)cosx?,0><—(sinx?)sinx?,(cosx!)sinx?,0>

sin? x?2
(cosx?)sinx? 2
= ————— = cotx
sin® x
FZ — FZ — D1y P2
21— 212 7 % L.p
x2 Fx2

_ <—(sinx)cosx?,(cosx*)cosx?,0><(cosx*)cosx? (sinx*)cosx?,—sinx?>

1

=0

V,(02) = Xk=q [} 0k = 17,01 + 15,0,

_ <—(cosx1)sinx?,—(sinx)sinx?,—cosx?>-<—(sinx!)sinx? (cosx!)sinx?,0>

sin? x2

<—(cosx1)sinx?,—(sinx1)sinx?,—cosx?><(cosx1)cosx?,(sinx1)cosx?

1

—sinx?%>




