Functions from \mathbb{R}^n to \mathbb{R}^m

$$\mathbb{R}^n = \{(x_1, ..., x_n) | x_i \in \mathbb{R}, i = 1, ..., n\}$$

 \mathbb{R}^n is a vector space with standard basis $\{\vec{e}_1,\dots,\vec{e}_n\}$ where $\vec{e}_i=<0,0,0,1,0,\dots,0>$ (1 in the i^{th} place). The standard norm on \mathbb{R}^n is given by:

$$\|\vec{x}\| = \sqrt{x_1^2 + \dots + x_n^2}$$
, where $\vec{x} = \langle x_1, \dots, x_n \rangle$.

We can define a distance on \mathbb{R}^n by:

$$d(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

Def. If $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, we say that f is **continuous at** $\overrightarrow{a} \in A$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $\|\overrightarrow{x} - \overrightarrow{a}\| < \delta$, then $\|f(\overrightarrow{x}) - f(\overrightarrow{a})\| < \epsilon$.

Def. If $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ and $\vec{a} \in A$, then we define the i^{th} partial derivative of f at \vec{a} as:

$$\frac{\partial f}{\partial x_i}(\vec{a}) = \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_n)}{h}$$

as long as the limit exists.

Def. If $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, we say that f is **differentiable at** $\overrightarrow{a} \in A$ if there exists a linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that:

$$\lim_{\vec{h} \to 0} \frac{\|f(\vec{a} + \vec{h}) - f(\vec{a}) - \lambda(\vec{h})\|}{\|\vec{h}\|} = 0.$$

In this case, we say $Df(\vec{a}) = \lambda$.

Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, then we can write:

$$f(x_1, ..., x_n) = (f_1(x_1, x_2, ..., x_n), f_2(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n))$$
where $f_i : \mathbb{R}^n \to \mathbb{R}$.

Theorem: If $f:\mathbb{R}^n\to\mathbb{R}^m$ is differentiable at $\vec{a}\in\mathbb{R}^n$, then $\frac{\partial f_i}{\partial x_j}(\vec{a})$ exists for $1\leq i\leq m$, $1\leq j\leq n$, and

$$Df(\vec{a}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

where $\frac{\partial f_i}{\partial x_i}$ is evaluated at \vec{a} .

Def. $Df(\vec{a})$ is called the **Jacobian matrix** of f at \vec{a} . So if $Df(\vec{a})$ exists, then all of the partial derivatives, $\frac{\partial f_i}{\partial x_j}$, exist at \vec{a} . The converse is not true: all of $\frac{\partial f_i}{\partial x_j}$ existing at \vec{a} does not imply $Df(\vec{a})$ exists.

Theorem (Chain Rule): If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\vec{a} \in \mathbb{R}^n$, and $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(\vec{a})$, then $g \circ f: \mathbb{R}^n \to \mathbb{R}^p$ is differentiable at \vec{a} and $D(g \circ f)(\vec{a}) = Dg(f(\vec{a})) \circ Df(\vec{a})$.

Def. A **change of coordinates** on an open set, $U \subseteq \mathbb{R}^n$, is a differentiable map $g: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ such that $det(Dg(\vec{x})) \neq 0$ for $\vec{x} \in U$.

Ex. Suppose $g: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a change of coordinates on U. Thus:

$$g(x_1,...,x_n) = (g_1(x_1,...,x_n),....,g_n(x_1,...,x_n))$$

$$\bar{x}_1 = g_1(x_1,...,x_n)$$

$$\vdots$$

$$\bar{x}_n = g_n(x_1,...,x_n).$$

Given $f: \mathbb{R}^n \to \mathbb{R}$, find a relationship between $\frac{\partial f}{\partial x_i}$ and $\frac{\partial f}{\partial \bar{x}_1}$, ..., $\frac{\partial f}{\partial \bar{x}_n}$.

By the Chain Rule, since $f \circ g: \mathbb{R}^n \to \mathbb{R}$:

$$D(f \circ g)(x_1, \dots, x_n) = Df(g(x_1, \dots, x_n)) \circ Dg(x_1, \dots, x_n)$$

$$\left(\frac{\partial f}{\partial x_1} \dots \frac{\partial f}{\partial x_n}\right) = \left(\frac{\partial f}{\partial \bar{x}_1} \dots \frac{\partial f}{\partial \bar{x}_n}\right) \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \dots & \frac{\partial g_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial g_n}{\partial x_1} & \dots & \frac{\partial g_n}{\partial x_n} \end{pmatrix}$$

$$\left(\frac{\partial f}{\partial x_1} \dots \frac{\partial f}{\partial x_n}\right) = \left(\frac{\partial f}{\partial \bar{x}_1} \dots \frac{\partial f}{\partial \bar{x}_n}\right) \begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \dots & \frac{\partial \bar{x}_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \bar{x}_n}{\partial x_1} & \dots & \frac{\partial \bar{x}_n}{\partial x_n} \end{pmatrix}$$

$$\frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial \bar{x}_1} \frac{\partial \bar{x}_1}{\partial x_i} + \dots + \frac{\partial f}{\partial \bar{x}_n} \frac{\partial \bar{x}_n}{\partial x_i}$$

Ex. Let $\bar{x}_1 = x_1 \cos x_2$; $\bar{x}_2 = x_1 \sin x_2$; $f(\bar{x}_1, \bar{x}_2) = (\bar{x}_1^2 + \bar{x}_2^2) + \bar{x}_1 \bar{x}_2$. Calculate $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$ by the Chain Rule and directly and show they are equal.

Chain Rule:
$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial \bar{x}_1} \frac{\partial \bar{x}_1}{\partial x_1} + \frac{\partial f}{\partial \bar{x}_2} \frac{\partial \bar{x}_2}{\partial x_1}; \qquad \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial \bar{x}_1} \frac{\partial \bar{x}_1}{\partial x_2} + \frac{\partial f}{\partial \bar{x}_2} \frac{\partial \bar{x}_2}{\partial x_2}$$

$$\frac{\partial \bar{x}_1}{\partial x_1} = \cos x_2; \qquad \frac{\partial \bar{x}_2}{\partial x_1} = \sin x_2$$

$$\frac{\partial \bar{x}_1}{\partial x_2} = -x_1 \sin x_2; \qquad \frac{\partial \bar{x}_2}{\partial x_2} = x_1 \cos x_2$$

$$\frac{\partial f}{\partial \bar{x}_1} = 2\bar{x}_1 + \bar{x}_2; \qquad \frac{\partial f}{\partial \bar{x}_2} = 2\bar{x}_2 + \bar{x}_1.$$

$$\frac{\partial f}{\partial x_1} = (2\bar{x}_1 + \bar{x}_2)(\cos x_2) + (2\bar{x}_2 + \bar{x}_1)(\sin x_2)$$

$$= (2x_1\cos x_2 + x_1\sin x_2)(\cos x_2) + (2x_1\sin x_2 + x_1\cos x_2)(\sin x_2)$$

$$= 2x_1(\cos^2 x_2 + \sin^2 x_2) + 2x_1(\sin x_2)(\cos x_2)$$

$$= 2x_1 + 2x_1(\sin x_2)(\cos x_2).$$

$$\frac{\partial f}{\partial x_2} = (2\bar{x}_1 + \bar{x}_2)(-x_1\sin x_2) + (2\bar{x}_2 + \bar{x}_1)(x_1\cos x_2)$$

$$= (2x_1\cos x_2 + x_1\sin x_2)(-x_1\sin x_2) + (2x_1\sin x_2 + x_1\cos x_2)(x_1\cos x_2)$$

$$= -x_1^2\sin^2 x_2 + x_1^2\cos^2 x_2.$$

Directly:
$$f(\bar{x}_1, \bar{x}_2) = \bar{x}_1^2 + \bar{x}_2^2 + \bar{x}_1 \bar{x}_2 = x_1^2 + x_1^2 \sin x_2 \cos x_2$$

$$\frac{\partial f}{\partial x_1} = 2x_1 + 2x_1 \sin x_2 \cos x_2$$

$$\frac{\partial f}{\partial x_2} = x_1^2 (-\sin^2 x_2 + \cos^2 x_2).$$

Ex. Let u=x-3y and v=x+3y. Let $T\colon \mathbb{R}^2\to \mathbb{R}$ be a smooth function. Find $\frac{\partial^2 T}{\partial u\partial v}$ only in terms of derivatives of T with respect to x and y.

By the chain rule:

$$\frac{\partial T}{\partial v} = \frac{\partial T}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial T}{\partial y} \frac{\partial y}{\partial v}.$$
 So we need x and y in terms of u and v so we can calculate $\frac{\partial x}{\partial v}$ and $\frac{\partial y}{\partial v}$.

$$u = x - 3y$$

$$v = x + 3y$$

$$u + v = 2x$$

$$u - v = -6y$$
Or
$$x = \frac{1}{2}(u + v)$$

$$\frac{\partial x}{\partial u} = \frac{1}{2}$$

$$\frac{\partial x}{\partial v} = \frac{1}{2}$$

$$\frac{\partial y}{\partial u} = -\frac{1}{2}$$

$$\frac{\partial y}{\partial v} = \frac{1}{2}$$

$$\frac{\partial y}{\partial v} = \frac{1}{2}$$

$$\frac{\partial z}{\partial v} = \frac{1}{2}$$

$$= \frac{1}{2} \left[\frac{\partial^2 T}{\partial x^2} \frac{\partial x}{\partial u} + \frac{\partial^2 T}{\partial y \partial x} \frac{\partial y}{\partial u} \right] + \frac{1}{6} \left[\frac{\partial^2 T}{\partial x \partial y} \frac{\partial x}{\partial u} + \frac{\partial^2 T}{\partial y^2} \frac{\partial y}{\partial u} \right]$$

$$= \frac{1}{2} \left[\frac{\partial^2 T}{\partial x^2} \left(\frac{1}{2} \right) + \frac{\partial^2 T}{\partial y \partial x} \left(-\frac{1}{6} \right) \right] + \frac{1}{6} \left[\frac{\partial^2 T}{\partial x \partial y} \left(\frac{1}{2} \right) + \frac{\partial^2 T}{\partial y^2} \left(-\frac{1}{6} \right) \right]$$

$$\frac{\partial^2 T}{\partial u \partial v} = \frac{1}{4} \frac{\partial^2 T}{\partial x^2} - \frac{1}{36} \frac{\partial^2 T}{\partial y^2}.$$

Directional Derivatives:

Def. Let $F:U\subseteq\mathbb{R}^n\to\mathbb{R}$, $\vec{a}\in U$, and \vec{u} be a unit vector in \mathbb{R}^n . The **directional derivative** of F at \vec{a} in the direction \vec{u} is:

$$D_{\vec{u}}F(\vec{a}) = \lim_{h \to 0} \frac{F(\vec{a} + h\vec{u}) - F(\vec{a})}{h}$$

when the limit exists.

Notice:

$$D_{\vec{u}}F(\vec{a}) = \frac{d}{dt} \left(F(\vec{a} + t\vec{u}) \right) \Big|_{t=0}$$

since if $g(t) = F(\vec{a} + t\vec{u})$, then:

$$g'(0) = \lim_{h \to 0} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0} \frac{F(\vec{a} + h\vec{u}) - F(\vec{a})}{h}.$$

Also notice by the Chain Rule:

$$\frac{d}{dt} \big(F(\vec{a} + t\vec{u}) \big) = \frac{\partial F}{\partial x_1} \frac{\partial x_1}{\partial t} + \dots + \frac{\partial F}{\partial x_n} \frac{\partial x_n}{\partial t} \,.$$
So if $x_1 = a_1 + tu_1 \Rightarrow \frac{dx_1}{dt} = u_1$

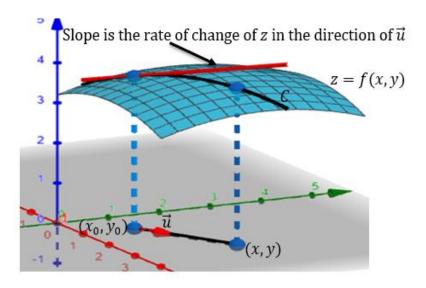
$$\vdots$$

$$x_n = a_n + tu_n \Rightarrow \frac{dx_n}{dt} = u_n \quad \text{then:}$$

$$D_{\vec{u}} F(\vec{a}) = \frac{d}{dt} \big(F(\vec{a} + t\vec{u}) \big) \Big|_{t=0} = \nabla F \cdot \vec{u} \,.$$

So $D_{\overrightarrow{u}}F(\overrightarrow{a})$ is the rate of change of the value of F in the direction of \overrightarrow{u} at \overrightarrow{a} .

In the case of a function z = f(x, y) we have:



Ex. Find the directional derivative of $F(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3$ at the point (3, 2, 1) in the direction of $\vec{u} = \frac{1}{\sqrt{21}}(-1, -4, 2)$.

$$D_{\vec{u}}F(3,2,1) = \nabla F(3,2,1) \cdot \vec{u}$$

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \frac{\partial F}{\partial x_3}\right) = (2x_1, 2x_2x_3, x_2^2)$$

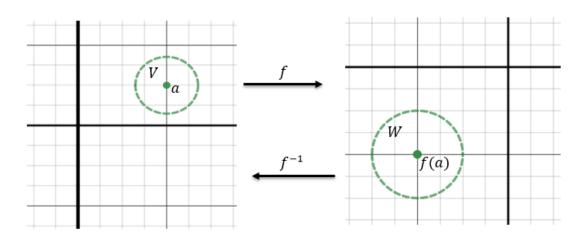
$$\nabla F(3,2,1) = (6,4,4)$$

$$D_{\vec{u}}F(3,2,1) = (6,4,4) \cdot \frac{1}{\sqrt{21}}(-1,-4,2) = -\frac{14}{\sqrt{21}}.$$

Note: If $DF(\vec{a})$ exists, then so do all of the partial derivatives of F and hence ∇F . Thus, the directional derivative of F in the direction of \vec{u} at \vec{a} also exists, since $D_{\vec{u}}F(\vec{a})=\nabla F\cdot\vec{u}$.

Inverse Function Theorem: Suppose that $f\colon \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable in an open set U, containing \vec{a} (i.e. $Df(\vec{x})$ exists for all $\vec{x} \in U$ and $\frac{\partial f_i}{\partial x_j}$ is continuous at $\vec{x} \in U$ for $i=1,\ldots,n$) and $\det(Df(\vec{a})) \neq 0$, then there exists an open set , V, containing \vec{a} and an open set, W, containing $f(\vec{a})$ such that $f\colon V \to W$ has a continuous inverse $f^{-1}\colon W \to V$, which is continuously differentiable for $y \in W$ and satisfies:

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1}.$$



- Note 1: If $det(Df(\vec{a})) = 0$, f might still have a continuous inverse, however its inverse is not differentiable. For example, $f(x) = x^3$ near x = 0.
- Note 2: The Inverse Function Theorem only guarantees a local inverse. In fact, f can have a local inverse at every point and not have a global inverse. For example, $f(x, y) = (e^x \cos y, e^x \sin y)$.
- Ex. Suppose $f(x_1,x_2)=(x_1\cos x_2$, $x_1\sin x_2)$; $0< x_1$, $0\le x_2< 2\pi$, so $\bar{x}_1=x_1\cos x_2$, $\bar{x}_2=x_1\sin x_2$. Find $D(f^{-1})$.

$$Df(x_1, x_2) = \begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \frac{\partial \bar{x}_1}{\partial x_2} \\ \frac{\partial \bar{x}_2}{\partial x_1} & \frac{\partial \bar{x}_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \cos x_2 & -x_1 \sin x_2 \\ \sin x_2 & x_1 \cos x_2 \end{pmatrix}$$

$$\det(Df(x_1, x_2)) = x_1 \cos^2 x_2 + x_1 \sin^2 x_2 = x_1 \neq 0.$$

So by the Inverse Function Theorem:

$$D(f^{-1})(\bar{x}_1, \bar{x}_2) = [Df(x_1, x_2)]^{-1}$$
.

Recall for a 2 by 2 matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \implies A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Thus we have:

$$D(f^{-1})(\bar{x}_1, \bar{x}_2) = \frac{1}{x_1} \begin{pmatrix} x_1 \cos x_2 & x_1 \sin x_2 \\ -\sin x_2 & \cos x_2 \end{pmatrix}.$$

In terms of \bar{x}_1 , \bar{x}_2 :

$$\bar{x}_1 = x_1 \cos x_2$$
 $\bar{x}_2 = x_1 \sin x_2$ $x_1 = \sqrt{\bar{x}_1^2 + \bar{x}_2^2}$.

So we can write:

$$D(f^{-1})(\bar{x}_1, \bar{x}_2) = \frac{1}{\sqrt{\bar{x}_1^2 + \bar{x}_2^2}} \begin{pmatrix} \bar{x}_1 & \bar{x}_2 \\ -\frac{\bar{x}_2}{x_1} & \frac{\bar{x}_1}{x_1} \end{pmatrix} = \begin{pmatrix} \frac{\bar{x}_1}{\sqrt{\bar{x}_1^2 + \bar{x}_2^2}} & \frac{\bar{x}_2}{\sqrt{\bar{x}_1^2 + \bar{x}_2^2}} \\ -\frac{\bar{x}_2}{\bar{x}_1^2 + \bar{x}_2^2} & \frac{\bar{x}_1}{\bar{x}_1^2 + \bar{x}_2^2} \end{pmatrix}.$$

Ex. For a general change of coordinates:

$$g: \mathbb{R}^n \to \mathbb{R}^n$$

$$g(x_1, ..., x_n) = (g_1(x_1, ..., x_n), ..., g_n(x_1, ..., x_n))$$

$$\bar{x}_1 = g_1(x_1, ..., x_n) = \bar{x}_1(x_1, ..., x_n)$$

$$\vdots$$

$$\bar{x}_n = g_n(x_1, ..., x_n) = \bar{x}_n(x_1, ..., x_n).$$

The inverse map, g^{-1} , takes $\bar{x}_1, \dots, \bar{x}_n$ into x_1, \dots, x_n . That is:

$$x_1 = x_1(\bar{x}_1, \dots, \bar{x}_n)$$

$$\vdots$$

$$x_n = x_n(\bar{x}_1, \dots, \bar{x}_n).$$

Thus, we have:

$$(Dg)(x_1, \dots, x_n) = \begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \cdots & \frac{\partial \bar{x}_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \bar{x}_n}{\partial x_1} & \cdots & \frac{\partial \bar{x}_n}{\partial x_n} \end{pmatrix}$$

$$(Dg^{-1})(\bar{x}_1, \dots, \bar{x}_n) = \begin{pmatrix} \frac{\partial x_1}{\partial \bar{x}_1} & \cdots & \frac{\partial x_1}{\partial \bar{x}_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial \bar{x}_1} & \cdots & \frac{\partial x_n}{\partial \bar{x}_n} \end{pmatrix}.$$

By the Inverse Function Theorem,

$$\begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \cdots & \frac{\partial \bar{x}_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \bar{x}_n}{\partial x_1} & \cdots & \frac{\partial \bar{x}_n}{\partial x_n} \end{pmatrix} \text{ and } \begin{pmatrix} \frac{\partial x_1}{\partial \bar{x}_1} & \cdots & \frac{\partial x_1}{\partial \bar{x}_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial \bar{x}_1} & \cdots & \frac{\partial x_n}{\partial \bar{x}_n} \end{pmatrix}$$

are inverses of each other.

$$\begin{pmatrix} \frac{\partial x_1}{\partial \bar{x}_1} & \cdots & \frac{\partial x_1}{\partial \bar{x}_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial \bar{x}_1} & \cdots & \frac{\partial x_n}{\partial \bar{x}_n} \end{pmatrix} \begin{pmatrix} \frac{\partial \bar{x}_1}{\partial x_1} & \cdots & \frac{\partial \bar{x}_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \bar{x}_n}{\partial x_1} & \cdots & \frac{\partial \bar{x}_n}{\partial x_n} \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 1 \end{pmatrix}.$$

In other words:

$$\sum_{i=1}^n \frac{\partial x_k}{\partial \bar{x_i}} \frac{\partial \bar{x_i}}{\partial x_j} = \delta_j^k; \quad \delta_j^k \text{ is known as the Kronecker Delta}.$$