Functions from R™ to R™

T={0, o)l €R, D=1,..,0)

R™ is a vector space with standard basis {€;, ..., €, } where
e; =<0,0,0,1,0,...,0 > (1 in the it" place). The standard norm on R" is
given by:

1] =\/x12+---+x,21, where X = < Xy, .., Xy >.

We can define a distance on R" by:

d(%y) = 1F = VIl =1 — y1)? + -+ (xn — yn)?.

Def. If f:A € R™ —» R™, we say that f is continuous at d € A if for all
€ > 0 thereexistsa & > 0 such thatif ||X — d|| < &, then

1f ) - f@Il <e.

Def. If f:A € R™ —» Rand d € A, then we define the i*® partial derivative of

f atd as:
i(a) — lim f(ali ey A + h' ...,Cln) - f(ali ...,Cln)
axi h—-0 h

as long as the limit exists.



Def. If f:A € R™ —» R™, we say that f is differentiable at d € A if there
exists a linear transformation A: R™ = R™ such that:

im (2 h)—f@ -2 _
h=0 1]

In this case, we say Df (d) = A.

Let f: A € R™ — R™, then we can write:

flxg, ey xy) = (fl(xl,xz, s X)) f2 (1, Xy ey X00), ey i (24, X5, ...,xn))
where f;: R" - R.

- a L 71—
Theorem: If f: R™ — R™ is differentiable at @ € R", then 6_9]:1 (a) exists
J
forl<i<m,1<j<n,and
oh .. Oh
d0x4 0x,
Df(a) =| : :
m . Ofm
d0xq dxy,

f' . -
where —L is evaluated at a.
ax]'

Def. Df(a) is called the Jacobian matrix of f at d. So if Df (@) exists, then all

. R of;
of the partial derivatives, a_xl , exist at d. The converse is not true: all of —L

j 0xj
existing at d does not imply Df (&) exists.

Theorem (Chain Rule): If f: R™ — R™ is differentiable at @ € R™, and
g: R™ — RP is differentiable at f(d), then g o f: R™ —» RP

is differentiable at d and D(g o f)(d) = Dg(f(c_i)) o Df(a).



Def. A change of coordinates on an open set, U € R", is a differentiable map
g:U € R™ - R™ such that det(Dg (X)) # 0 for X € U.

Ex. Suppose g: U € R™ — R™ is a change of coordinates on U. Thus:

g(xlr"txn) = (91(x1;--;xn); ---)gn(xli")xn))

Given f: R™ — R, find a relationship between Fy™ and

X, = g1(x1,.., %)

fn = gn(xly--;

Xp).

Xi

By the Chain Rule, since f o g: R™" —» R:
D(f ° g)(xlr ---;xn) = Df(.g(xll ---;xn)) ° Dg(xll ---:xn)

(5% - 70) = 5,
dx, " 9xn/  \9%;
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Ex. Let fl = X1 COS X5, fz = X1 Sinxz,' f(fl,fz) = (flz + fg) + flfz.

0 0
Calculate L/ ) L/ by the Chain Rule and directly and show they are equal.
axl axz

Of _ Of 9%y | Of 9% Of _ Of 9% | Of 9%

Chain Rule: = =
ain rule axl 63?1 ax1 ax_z ax1 ! aXZ 63?1 axZ 69?2 axZ
%—cosx' aﬁ—sinx
6x1 - 2 axl - 2
%1 _ .y cinxa 9% _
ox, 1 2/ dx, X1 COS X7
af _ _ af — —
— = 2X; + X,; — =2 :
of

Py (2x; + x,)(cosx,) + (2x, + x1)(sinx,)

1
= (2x; cosx, + x; sinx,)(cos x,) + (2x; sinx, + x; cos x,)(sin x,)
= 2x,(cos? x, + sin? x,) + 2x;(sin x,)(cos x;)

= 2x; + 2x,(sinx,)(cos x,).

or

9% == (2.7?1 + fz)(_xl Sin xz) + (23?2 + fl)(xl COoS xz)
2

= (2x4 cos x, + x4 sinx,)(—x; sinx,)
+(2x1 sinx; + x1 cos x,)(x1 cos x3)

= —xfsin? x, + x{ cos? x, .



Directly: f(%y, %) = X8 + X5 + X, %, = x¢ + x% sinx, cos x,
af .
— = 2x1 + 2x4 sin x, cos x,
axl

d .
9 _ x%(—sin? x, +cos? x,).
axZ

Ex. Letu = x — 3y and ¥ = x + 3y. Let T: R? > R be a smooth
2

ouov

function. Find only in terms of derivatives of T with respect to

X and y.

By the chain rule:
0T _ 0T 0x | OT dy

30— 3x 00 9y ov So we need X and y in terms of U and V so we

culate 2% ang 2
cancacuaeavan Py
u=x-—3y u=x-—3y
v=x+3y v=x+3y
u+v=2%x u—v=-—6y
1 1
Or x=5(u+v) ory=g(v—u).
ox 1 ox 1 oy 1 dy 1
ou 2 v 2 du 6 v 6

6T_6T6x+6T6y_16T+16T
dv dxdv dydv 20x 60y

d°T d OT] 0 10T 10T, 10 dT1 1 _o0 dT

uov ~ aulov) ~3ul2ax Teay ~ 2l5uaxl T6lougy



l[aZT ox . 0°T ay] l[aZT ox . 0°T ay]
2 l0x20u  0ydxou 6 "0x0y ou 0y2ou

1[9%T 1 02T 1 1,.0%T (1 02T 1
2 [ﬁ Dt 9ydx (= E)] *s [axay (E) t o2 (_ E)]

9T _ 19%T 1 9%T

dudv  40x2 360y2"

Directional Derivatives:
Def. Let F:U C R™ —- R,d € U, and U be a unit vector in R™. The

directional derivative of F at d in the direction U is:

F(a+ hu) —F(a
DaF(&)=}li£r(1)( h) (a)

when the limit exists.

Notice:

_d L
D;F(d) = - (F(d + tu))

t=0

sinceif g(t) = F(a + tu), then:

9'(0) = lim g(0+h)—g(0) — lim F(d+hu)—-F(Q) .
h—0 h h—0 h



Also notice by the Chain Rule:

d S 5 OF 0x4 OF 0xp
— F T e— — LI ) — — .
dt( @+ tu)) dx, Ot + 0xn Ot
. dx,
So if x1=a1+tu1 = —=u1
dt
dxq
Xp =an +tu, = 2 U, then:

=VF-1u.

- d - —
DzF(a) = I (F(a + tu))
t=0

So D3 F () is the rate of change of the value of F in the direction of U at d.

In the case of a function z = f(x, y) we have:

2

Slope is the rate of change of z in the direction of i




Ex. Find the directional derivative of F (x4, X5, X3) = X% + X5x3 at the point
. . . = _ 1/ 1 _
(3,2,1) in the direction of U = ﬁ( 1,—4,2).
D2F(3,2,1) = VF(3,2,1) - &

OF OF OF
y— = (2x4, 2X,X=, X2
dx,’ 0%, axg) (21, 226233, 3)

VF(3,2,1) = (6,4,4)
DzF(3,2,1) = (6,4,4) - 1(-1,—4,2) = - £

vF = (

Note: If DF(a) exists, then so do all of the partial derivatives of F and
hence VF. Thus, the directional derivative of F in the direction of U at

also exists, since D3 F(d) = VF - U .

Inverse Function Theorem: Suppose that f: R"™ — R" is continuously
differentiable in an open set U, containing d (i.e. Df()_c)) exists for all

- a L - .
x € U and a_;]:l is continuousat X € U fori =1, ...,n) and
J

det(Df(Ei)) # 0, then there exists an open set , V, containing @ and an
open set, W, containing f (@) such that f: ¥V — W has a continuous
inverse f~1: W — V, which is continuously differentiable for y € W and

satisfies:

FY=[FF )]

£ @




Note 1: If det(Df (d@)) = 0, f might still have a continuous inverse,
however its inverse is not differentiable. For example, f(x) = x3 near
x = 0.

Note 2: The Inverse Function Theorem only guarantees a local inverse.
In fact, f can have a local inverse at every point and not have a
global inverse. For example, f(x,y) = (e* cosy,e* siny).

Ex. Suppose f(x1,%;) = (x1cosxy,x,sinx,); 0<x;, 0<x,<2m,
S0 X; = X, COSX,, X, = XxqSinx,.Find D(f™1).

0x, 0x;
B a_xl 6_x2 __[(cosx, —XxpSinx,
Df(Xsz)— 0x, 0X, _<sinx2 xlcosxz)
ox; Ox,

det(Df (x1,%3)) = x1 cos? x, + x4 sin? x, = x; # 0.

So by the Inverse Function Theorem:

D(f~1) (%1, %) = [Df (x1,x,)] 7.

Recall for a 2 by 2 matrix:

a a 1 a —a
4= ( 11 12) — 41 = (_ 22 12)_
a1 Qzp detA\—A21 Q11

Thus we have:

D(f 1 (%, %,) = _<—sinx2 COS X,

1 /x;cosx, x;sin x2>
X1



In terms of X1, X5:

X; = X;C0SXy X, =Xx;Sinx,  X; = /flz + X5 .

So we can write:

1 _ _ =2 -2 —2 —2
D(f_l)(fll -fz) Ry ———— Xy X1 | = \/xl -1_ Xy \/x1_+ X9

[32 x 72\ —— — X X

Ex. For a general change of coordinates:

g:R* - R"
g(xq, v, Xp) = (gl(xl, ey X))y weey G (X4, ...,xn))

Jz1 = 91(361; "'lxn) = fl(xli '"lxn)

Xy = Gn (X1, e, X)) = X (X1, oo, Xp).

The inverse map, g_l, takes X1, ..., X, into X1, ..., X,. That is:

X1 = xl(fll lfn)

Xn = X (X, v, Xp).

10



Thus, we have:

(Dg) (X1, ooes Xn) =

(Dg™ (X, .., Xy) =

By the Inverse Function Theorem,

0x4 0x,
: : and
0Xn 0xXn

are inverses of each other.

axl axl 63?1

63?1 afn ax1

aﬁ 0xXp 0Xn
69?1 afn axl




In other words:

yn 9%k 0%
=1 0x; ax]'

_ sk.
= §;

5}!c is known as the Kronecker Delta.
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