Smooth Maps, Tangent Planes and Derivatives

Given two smooth surfaces S_1 , S_2 we want to define the notion of a smooth map $f\colon S_1\to S_2$.

If we let $\overrightarrow{\Phi}_1: U \subseteq \mathbb{R}^2 \to S_1$ and $\overrightarrow{\Phi}_2: V \subseteq \mathbb{R}^2 \to S_2$ be surface patches (i.e., smooth, regular parametrizations) then,

Since $U\subseteq\mathbb{R}^2$ and $V\subseteq\mathbb{R}^2$, we say f is **smooth** if $\overrightarrow{\Phi}_2^{-1}\circ f\circ\overrightarrow{\Phi}_1$ is smooth.

Def: If $f: S_1 \to S_2$ is smooth, 1-1, and onto, and $f^{-1}: S_2 \to S_1$ is smooth, we say f is a **diffeomorphism** and that S_1 and S_2 are **diffeomorphic**.

Tangents and Derivatives

Def: A **tangent vector** to a surface, S, at a point, $p \in S$, is the tangent vector at p of a curve in S passing through p. The **tangent space** (or **tangent plane**) of S at p is the set of all tangent vectors to S at p. We denote this by: T_pS .

If $\gamma(t)=ig(u(t),v(t)ig)$ is a smooth curve, then $\overrightarrow{\Phi}ig(u(t),v(t)ig)$ is a smooth curve on S. By the chain rule:

$$\frac{d}{dt}\vec{\Phi}(u(t),v(t)) = \vec{\Phi}_u\left(\frac{du}{dt}\right) + \vec{\Phi}_v\left(\frac{dv}{dt}\right)$$

is a tangent vector on S at $\overrightarrow{\Phi}(u(t),v(t))$. In fact, all tangent vectors to S at $p\in S$ are spanned by:

$$\overrightarrow{\Phi}_u = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \text{ and } \overrightarrow{\Phi}_v = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)$$

since $\overrightarrow{\Phi}$ is assumed to be regular (i.e. $\overrightarrow{\Phi}_u \times \overrightarrow{\Phi}_v \neq \overrightarrow{0}$).

Thus all linear combinations of $\overrightarrow{\Phi}_u$ and $\overrightarrow{\Phi}_v$, i.e., $\left\{a\overrightarrow{\Phi}_u+b\overrightarrow{\Phi}_v\middle|a,b\in\mathbb{R}\right\}$ is the tangent plane of S at $p\in S$.

Ex. Let S be given by $z^2=x^2+y^2$, z>0 (portion of a circular cone with z>0). Find an equation of the tangent plane to S at (0,1,1) i.e., $T_{(0,1,1)}S$.

We can parametrize S by:

$$\overrightarrow{\Phi}(u,v) = (u\cos v, u\sin v, u); \ u > 0, \ 0 \le v \le 2\pi.$$

The point (0,1,1) corresponds to:

$$0 = u \cos v$$

$$1 = u \sin v$$

$$1 = u$$

$$\Rightarrow u = 1, v = \frac{\pi}{2}.$$

We first find $\overrightarrow{\Phi}_u(1,\frac{\pi}{2})$ and $\overrightarrow{\Phi}_v(1,\frac{\pi}{2})$:

$$\overrightarrow{\Phi}_u = (\cos v, \sin v, 1),$$

$$\operatorname{so} \overrightarrow{\Phi}_u(1, \frac{\pi}{2}) = (0, 1, 1)$$

$$\overrightarrow{\Phi}_v = (-u \sin v, u \cos v, 0),$$

$$\operatorname{so} \overrightarrow{\Phi}_v \left(1, \frac{\pi}{2}\right) = (-1, 0, 0).$$

To find the tangent plane at u=1, $v=\frac{\pi}{2}$ we need to find a normal vector to the surface which we get from:

$$\overrightarrow{\Phi}_u\left(1,\frac{\pi}{2}\right) \times \overrightarrow{\Phi}_v\left(1,\frac{\pi}{2}\right).$$

$$\overrightarrow{\Phi}_u\left(1,\frac{\pi}{2}\right) \times \overrightarrow{\Phi}_v\left(1,\frac{\pi}{2}\right) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 0 & 1 & 1 \\ -1 & 0 & 0 \end{vmatrix} = -\overrightarrow{j} + \overrightarrow{k}.$$

Recall that if we have a normal vector $\vec{N}=(A,B,C)$ and a point, $q=(x_0,y_0,z_0)$, on a plane, then an equation for the plane is: $A(x-x_0)+B(y-y_0)+C(z-z_0)=0.$

In this case, $\vec{N}=(0,-1,1), \ q=(0,1,1),$ so an equation for the tangent plane to S at (0,1,1) is:

$$0(x-0) - 1(y-1) + 1(z-1) = 0$$
or
$$-y + z = 0.$$

Or in vector form we can write the tangent plane as:

$$T_{(0,1,1)}S = \{(0,1,1) + s(0,1,1,) + t(-1,0,0); s,t \in \mathbb{R}\}.$$

Given a smooth map between two surfaces

$$f: S \to M$$

We want to define what we mean by the derivative of f (or differential of f) at $p \in S$, $D_p f$.

$$D_p f: T_p S \to T_{f(p)} M$$

by assigning any vector $\overrightarrow{w} \in T_pS$ to a vector in $T_{f(p)}M$. This is done as follows, given any vector, $\overrightarrow{w} \in T_pS$, there exists a curve, γ , in S passing through p, i.e., $\gamma(t_0) = p \in S$, such that $\gamma'(t_0) = \overrightarrow{w}$. Then $\overline{\gamma}(t) = f(\gamma(t))$ is a curve in M passing through f(p) at $t = t_0$. So $\overrightarrow{\overline{w}} = \overline{\gamma}'(t_0) \in T_{f(p)}M$. We define D_pf by:

$$D_p f(\overrightarrow{w}) = \overrightarrow{\overline{w}} \in T_{f(p)} M$$

How do we calculate $D_p f$?

Suppose $\overrightarrow{\Phi} \colon U \to \mathbb{R}^3$ is a surface patch for S containing p and $\overrightarrow{\Psi} \colon U' \to \mathbb{R}^3$ is a surface patch for M containing f(p). Since U and U' are open sets in \mathbb{R}^2 there is a smooth map

$$U \to U'$$

$$(u, v) \to (u', v') = (\alpha(u, v), \beta(u, v))$$

such that:

$$\overrightarrow{\Psi}^{-1}\circ f\left(\overrightarrow{\Phi}(u,v)\right)=\left(\alpha(u,v),\beta(u,v)\right).$$

Then:

$$D_p f = \begin{pmatrix} \alpha_u & \alpha_v \\ \beta_u & \beta_v \end{pmatrix}$$

with respect to the basis $\{\overrightarrow{\Phi}_u, \overrightarrow{\Phi}_v\}$ for T_pS and $\{\overrightarrow{\Psi}_{u'}, \overrightarrow{\Psi}_{v'}\}$ for $T_{f(p)}M$.

This is the Jacobian matrix for the map:

$$(u,v) \rightarrow (\alpha(u,v),\beta(u,v)).$$

Ex. Suppose S=M= upper hemisphere of the unit sphere. Parametrized by:

$$\overrightarrow{\Phi}(u,v) = \left(u, v, \sqrt{1 - u^2 - v^2}\right)$$
 for *S*

$$\vec{\Psi}(u', v') = (u', v', \sqrt{1 - (u')^2 - (v')^2})$$
 for M .

Suppose $f:S\to S$ by a rotation of $\frac{\pi}{2}$ about the z axis. Find D_pf .

Rotating about the z axis is equivalent to rotating $U = \{(u, v) \in \mathbb{R}^2 | u^2 + v^2 < 1\}$ about the origin.

The map $(u, v) \rightarrow (-v, u)$ does this:

Thus, we have:

$$(u,v) \xrightarrow{\overrightarrow{\Phi}} \left(u, v, \sqrt{1 - u^2 - v^2} \right) \xrightarrow{f} \left(-v, u, \sqrt{1 - u^2 - v^2} \right)$$
$$f\left(\overrightarrow{\Phi}(u,v) \right) = \left(-v, u, \sqrt{1 - u^2 - v^2} \right).$$

Since
$$\overrightarrow{\Psi}(u',v')=\left(u',v',\sqrt{1-(u')^2-(v')^2}\right)$$
, we have:
$$\overrightarrow{\Psi}^{-1}(x,y,z)=(x,y) \quad \text{and}$$

$$\overrightarrow{\Psi}^{-1}\circ f\left(\overrightarrow{\Phi}(u,v)\right)=(-v,u)=\left(\alpha(u,v),\beta(u,v)\right).$$

Thus we have:

$$\alpha(u, v) = -v, \qquad \beta(u, v) = u.$$

$$D_p f = \begin{pmatrix} \alpha_u & \alpha_v \\ \beta_u & \beta_v \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Ex. Find $D_p f$ if S is the surface in \mathbb{R}^3 given by:

$$\overrightarrow{\Phi}(u,v) = (u, v, u^2 + v^2); \quad u,v \in \mathbb{R},$$

and M be the upper hemisphere given by:

$$\overrightarrow{\Psi}(u',v') = \left(u',v',\sqrt{1-(u')^2-(v')^2}\right); \quad (u')^2 + (v')^2 < 1$$

and $f: S \to M$ by:

$$f(u, v, u^2 + v^2) = (\frac{-2u}{\sqrt{1 + 4u^2 + 4v^2}}, \frac{-2v}{\sqrt{1 + 4u^2 + 4v^2}}, \frac{1}{\sqrt{1 + 4u^2 + 4v^2}}).$$

$$\overrightarrow{\Psi}^{-1}(x,y,z) = (x,y) \text{ and } f\left(\overrightarrow{\Phi}(u,v)\right) = \left(\frac{-2u}{\sqrt{1+4u^2+4v^2}}, \frac{-2v}{\sqrt{1+4u^2+4v^2}}, \frac{1}{\sqrt{1+4u^2+4v^2}}\right), \text{ so }$$

$$\overrightarrow{\Psi}^{-1} \circ f\left(\overrightarrow{\Phi}(u,v)\right) = \left(\frac{-2u}{\sqrt{1+4u^2+4v^2}}, \frac{-2v}{\sqrt{1+4u^2+4v^2}}\right).$$

$$\alpha(u,v) = \frac{-2u}{\sqrt{1+4u^2+4v^2}}, \quad \beta(u,v) = \frac{-2v}{\sqrt{1+4u^2+4v^2}}.$$

$$D_p f = \begin{pmatrix} \alpha_u & \alpha_v \\ \beta_u & \beta_v \end{pmatrix}$$

$$\alpha_u = \frac{-2(1+4v^2)}{(1+4u^2+4v^2)^{\frac{3}{2}}} \qquad \alpha_v = \frac{8uv}{(1+4u^2+4v^2)^{\frac{3}{2}}}$$

$$\beta_u = \frac{8uv}{(1+4u^2+4v^2)^{\frac{3}{2}}} \qquad \beta_v = \frac{-2(1+4u^2)}{(1+4u^2+4v^2)^{\frac{3}{2}}}$$

So we have:

$$D_p f = -\frac{2}{(1+4u^2+4v^2)^{\frac{3}{2}}} \begin{pmatrix} (1+4v^2) & -4uv \\ -4uv & 1+4u^2 \end{pmatrix}.$$

Ex. In the previous example, take the point $p=(1,2,5)\in S$ (i.e., u=1,v=2) and consider the vector $\overrightarrow{w}\in T_pS$ given by $\overrightarrow{w}=3\overrightarrow{\Phi}_u(1,2)+\overrightarrow{\Phi}_v(1,2)$. Find $D_pf(\overrightarrow{w})$ with respect to the basis for $T_{f(p)}M$ given by $\overrightarrow{\Psi}_{u'}\big(f(p)\big), \ \overrightarrow{\Psi}_{v'}\big(f(p)\big)$ as well as the standard basis for \mathbb{R}^3 .

The matrix $D_p f = \begin{pmatrix} \alpha_u & \alpha_v \\ \beta_u & \beta_v \end{pmatrix}$ is a map from $T_p S$ to $T_{f(p)} M$ with respect to the basis $\{\overrightarrow{\Phi}_u, \overrightarrow{\Phi}_v\}$ for $T_p S$ and $\{\overrightarrow{\Psi}_{u\prime}, \overrightarrow{\Psi}_{v\prime}\}$ for $T_p M$.

In this case
$$p=(1,2,5)\in S$$
, i.e., $u=1,\ v=2$ and
$$f(u,v,u^2+v^2)=(\frac{-2u}{\sqrt{1+4u^2+4v^2}},\frac{-2v}{\sqrt{1+4u^2+4v^2}},\frac{1}{\sqrt{1+4u^2+4v^2}}),$$
 thus $f(p)=f(1,2,5)=\left(-\frac{2}{\sqrt{21}},-\frac{4}{\sqrt{21}},\frac{1}{\sqrt{21}}\right)\in M.$

For any point $p \in S$ we have from the previous example:

$$D_p f = -\frac{2}{(1+4u^2+4v^2)^{\frac{3}{2}}} \begin{pmatrix} (1+4v^2) & -4uv \\ -4uv & 1+4u^2 \end{pmatrix}.$$

Thus when $p = (1,2,5) \in S$, i.e., u = 1, v = 2 we have:

$$D_{(1,2,5)}f = -\frac{2}{(21)^{\frac{3}{2}}} \begin{pmatrix} 17 & -8 \\ -8 & 5 \end{pmatrix}.$$

With respect to the basis $\{\overrightarrow{\Phi}_u(1,2), \overrightarrow{\Phi}_v(1,2)\}$ we have $\overrightarrow{w}=<3,1>$. When we apply D_vf to \overrightarrow{w} we get:

$$D_{(1,2,5)}f(\overrightarrow{w}) = -\frac{2}{(21)^{\frac{3}{2}}} \begin{pmatrix} 17 & -8 \\ -8 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = -\frac{2}{(21)^{\frac{3}{2}}} \begin{pmatrix} 43 \\ -19 \end{pmatrix}.$$

The vector $-\frac{2}{(21)^{\frac{3}{2}}} < 43, -19 >$ is already written with respect to the basis $\{\overrightarrow{\Psi}_{u'}(f(p)), \ \overrightarrow{\Psi}_{v'}(f(p))\}$.

How do we write $-\frac{2}{(21)^{\frac{3}{2}}} < 43, -19 >$ with respect to the standard basis for \mathbb{R}^3 ?

To do that we need to write $\overrightarrow{\Psi}_{u'}(f(p)), \overrightarrow{\Psi}_{v'}(f(p))$ in terms of the standard basis in \mathbb{R}^3 .

From the previous problem we see that:

$$(u',v') = \overrightarrow{\Psi}^{-1} \circ f\left(\overrightarrow{\Phi}(u,v)\right) = \left(\frac{-2u}{\sqrt{1+4u^2+4v^2}}, \frac{-2v}{\sqrt{1+4u^2+4v^2}}\right).$$

So
$$u' = \frac{-2u}{\sqrt{1+4u^2+4v^2}}$$
 and $v' = \frac{-2v}{\sqrt{1+4u^2+4v^2}}$.

When u=1, v=2, we have $u'=-\frac{2}{\sqrt{21}}$, $v'=-\frac{4}{\sqrt{21}}$.

$$\overrightarrow{\Psi}(u',v') = \Big(u',v',\sqrt{1-(u')^2-(v')^2}\Big), \ \text{so}$$

$$\vec{\Psi}_{u'} = (1,0, -\frac{u'}{\sqrt{1 - (u')^2 - (v')^2}}) \implies \vec{\Psi}_{u'} \left(-\frac{2}{\sqrt{21}}, -\frac{4}{\sqrt{21}} \right) = <1,0,2>.$$

$$\overrightarrow{\Psi}_{v'} = (0,1, -\frac{v'}{\sqrt{1-(u')^2-(v')^2}}) \Rightarrow \overrightarrow{\Psi}_{v'} \left(-\frac{2}{\sqrt{21}}, -\frac{4}{\sqrt{21}}\right) = <0,1,4>.$$

So now we can find $(D_{(1,2,5)}f)(\overrightarrow{w})$ in the standard basis for \mathbb{R}^3 .

$$(D_{(1,2,5)}f)(\vec{w}) = -\frac{2}{(21)^{\frac{3}{2}}} < 43, -19 >$$

$$= -\frac{2}{(21)^{\frac{3}{2}}} (43\vec{\Psi}_{u'} \left(-\frac{2}{\sqrt{21}}, -\frac{4}{\sqrt{21}} \right) - 19\vec{\Psi}_{v'} \left(-\frac{2}{\sqrt{21}}, -\frac{4}{\sqrt{21}} \right))$$

$$= -\frac{2}{(21)^{\frac{3}{2}}} (43 < 1,0,2 > -19 < 0,1,4 >)$$

$$= -\frac{2}{(21)^{\frac{3}{2}}} < 43, -19, 10 >.$$