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Simple Closed Curves in ℝ2/The Isoperimetric Inequality/ 

The Four Vertex Theorem 

 

Def.  A simple closed curve in ℝ2 is a closed curve in ℝ2 that has no self 

         intersections. 

 

Ex.   𝛾(𝑡) = (𝑎 cos 𝑡 , 𝑏 sin 𝑡), 𝑡 ∈ ℝ, an ellipse, is a simple closed curve 

 in ℝ2. 

 

 

 

 

 

 

 

Ex.     The limacon, 𝛾(𝑡) = ((1 + 2 cos 𝑡) cos 𝑡), (1 + 2 cos 𝑡) sin 𝑡), 𝑡 ∈ ℝ 
 is a closed curve but not a simple closed curve: 

 

 

 

 

 

 

 

−𝑎                                                                    𝑎 

𝑏 

−𝑏 
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Every simple closed curve has a bounded interior and an unbounded exterior. For 

a simple closed curve, 𝛾, we say 𝛾 is positively oriented if the signed normal 𝑁𝑠
⃗⃗⃗⃗  

points into the interior of 𝛾 at every point of 𝛾. 

            Positively Oriented                                    Negatively Oriented 

 

 

 

 

 

                                 

                 

Theorem: The total signed curvature of a simple closed curve in ℝ2 is ±2𝜋 

∫ 𝜅𝑠(𝑠) 𝑑𝑠
𝑙

0

= ±2𝜋. 

 

The Isoperimetric Inequality  

 

Given a simple closed curve 𝛾 of fixed length 𝑙 = 𝑙(𝛾), what can we say about the 

area, 𝐴(𝛾), enclosed by 𝛾?  The isoperimetric inequality gives us an upper bound 

on 𝐴(𝛾).  However, we will need a collorary of Green’s theorem to establish this 

inequality. 

 

 

 

 

 

𝑇⃗  

𝑁⃗⃗ 𝑆  

𝑁⃗⃗ 𝑆  

𝑇⃗  
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Green’s Theorem: Let 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) be smooth functions and let   

           𝛾 be a positively oriented simple closed curve that    

                    bounds a region 𝐷 ⊆ ℝ2. Then: 

∬ (
𝜕𝑔

𝜕𝑥𝐷
−

𝜕𝑓

𝜕𝑦
)𝑑𝑥 𝑑𝑦 = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥 + 𝑔(𝑥, 𝑦)𝑑𝑦

𝛾
 . 

 

 

 

 

 

Cor:  Let 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be a positively oriented closed curve of 

 length 𝑙 bounding a region 𝐷, then:  

area(𝐷) = ∫ 𝑥 𝑑𝑦
𝛾

= −∫ 𝑦 𝑑𝑥
𝛾

=
1

2
∫ (−𝑦 𝑑𝑥 + 𝑥 𝑑𝑦)
𝛾

 . 

 

Proof:  area(𝐷) = ∬ 1 𝑑𝑥𝑑𝑦
𝐷

.  

  Let 𝑔(𝑥, 𝑦) = 𝑥,    𝑓(𝑥, 𝑦) = 0, then  
𝜕𝑔

𝜕𝑥
−

𝜕𝑓

𝜕𝑦
= 1.   

   Now apply Green’s Theorem: 

area (𝐷) = ∬ 1 𝑑𝑥𝑑𝑦
𝐷

= ∫ 𝑓(𝑥, 𝑦)𝑑𝑥 + 𝑔(𝑥, 𝑦)𝑑𝑦
𝛾

= ∫ 𝑥 𝑑𝑦
𝛾

.  

Now let 𝑓(𝑥, 𝑦) = −𝑦,   𝑔(𝑥, 𝑦) = 0, then 
𝜕𝑔

𝜕𝑥
−

𝜕𝑓

𝜕𝑦
= 1.  

Now apply Green’s Theorem: 

area(𝐷) = ∬ 1 𝑑𝑥𝑑𝑦
𝐷

= ∫ 𝑓(𝑥, 𝑦)𝑑𝑥 + 𝑔(𝑥, 𝑦)𝑑𝑦
𝛾

= −∫ 𝑦 𝑑𝑥
𝛾

 . 

𝐷 
𝛾 = 𝜕𝐷 
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 Finally,  ∫ 𝑥 𝑑𝑦
𝛾

− ∫ 𝑦 𝑑𝑥
𝛾

= 2(area of 𝐷) so we can write: 

1

2
∫ (𝑥 𝑑𝑦 − 𝑦 𝑑𝑥)
𝛾

= area of 𝐷.  

 

Theorem (Isoperimetric Inequality):  Let 𝛾 be a smooth simple closed curve in    

 ℝ2 with 𝑙(𝛾) = length of 𝛾 and 𝐴(𝛾) = area bounded by 𝛾. Then: 

𝐴(𝛾) ≤
1

4𝜋
(𝑙(𝛾))

2
    

 and this equality holds if, and only if, 𝛾 is a circle. 

 

 

Proof (We will prove this for regular curves, but it’s actually true for 𝐶1 curves):    

             Let 𝐿1 and 𝐿2 be parallel lines that are tangent to 𝛾 such that 𝛾  

   is contained between them. 

 

    Let 𝛼 be a circle that is tangent to 𝐿1 and 𝐿2 that doesn’t intersect 𝛾. 
      

    Let 𝛾 be parametrized by its arc length, 𝑠, and let 𝑙 = 𝑙(𝛾). 

    So 𝛾(𝑠) = (𝑥(𝑠), 𝑦(𝑠)), and we can parametrized the circle by:   

                 𝛼(𝑠) = (𝑥̅(𝑠), 𝑦̅(𝑠)) = (𝑥(𝑠), 𝑦̅(𝑠))   i.e. take 𝑥̅(𝑠) = 𝑥(𝑠). 

                              So,   𝑥2 + 𝑦̅2 = 𝑟2. 

 

 

 

 



5 
 

 

 

 

 By Green’s Theorem, the area bounded by 𝛾, 𝐴, is: 

𝐴 = ∫ 𝑥 𝑑𝑦
𝛾

= ∫ 𝑥
𝑑𝑦

𝑑𝑠

𝑙

0
 𝑑𝑠.   

 

 The area bounded by the circle 𝛼, 𝐴̅, is: 

𝐴̅ = 𝜋𝑟2 = −∫ 𝑦̅ 𝑑𝑥
𝛼

= −∫ 𝑦̅
𝑑𝑥

𝑑𝑠
 𝑑𝑠

𝑙

0
.   

 

 Adding the two areas we get: 

𝐴 + 𝜋𝑟2 = ∫ (𝑥
𝑙

0
𝑦′ − 𝑥′𝑦̅) 𝑑𝑠 ≤  ∫ √(𝑥𝑦′ − 𝑥′𝑦̅)2

𝑙

0
 𝑑𝑠.  

𝛾(𝑠) 

𝐴 

𝑠 = 0 

𝑠 = 𝑠0 

𝛼(𝑠) 

𝐴̅ 

𝐿1 𝐿2 

𝑠 = 0 𝑠 = 𝑠0 

𝑥̅(0) = 𝑥(0) = 𝑟 

𝑥̅(𝑠0) = 𝑥(𝑠0) = −𝑟 

𝑥̅2 + 𝑦̅2 = 𝑟2 



6 
 

Claim: (𝑥𝑦′ − 𝑥′𝑦̅)2 ≤ (𝑥2 + 𝑦̅2)((𝑥′)2 + (𝑦′)2).  

 

(𝑥𝑦′ − 𝑥′𝑦̅)2 = 𝑥2(𝑦′)2 − 2𝑥𝑦′𝑥′𝑦̅ + (𝑥′)2𝑦̅2. 

 

But 0 ≤ (𝑦̅𝑦′ + 𝑥 𝑥′)2 = 𝑦̅2(𝑦′)2 + 2𝑦̅𝑦′𝑥′𝑥 + 𝑥2(𝑥′)2         (1) 

 

so we can write: 

−2𝑥𝑦′𝑥′𝑦̅ ≤  𝑦̅2(𝑦′)2 + 𝑥2(𝑥′)2. 

 

(𝑥𝑦′ − 𝑥′𝑦̅)2 ≤ 𝑥2(𝑦′)2 + 𝑥2(𝑥′)2 + (𝑦̅2)(𝑦′)2 + (𝑥′)2𝑦̅2 

 

= (𝑥2 + 𝑦̅2)((𝑥′)2 + (𝑦′)2). 

So 

   (𝑥𝑦′ − 𝑥′𝑦̅)2 ≤ (𝑥2 + 𝑦̅2)((𝑥′)2 + (𝑦′)2). 

 

Now we have: 

          𝐴 + 𝜋𝑟2 ≤ ∫ √(𝑥𝑦′ − 𝑥′𝑦̅)2
𝑙

0
 𝑑𝑠  

≤ ∫ √(𝑥2 + 𝑦̅2)((𝑥′)2 + (𝑦′)2)
𝑙

0
 𝑑𝑠  

                           = ∫ √𝑥2 + 𝑦̅2𝑙

0
 𝑑𝑠         (since 𝛾 is unit speed) 

                      = ∫ √𝑥̅2 + 𝑦̅2𝑙

0
 𝑑𝑠 = 𝑙𝑟       (since √𝑥̅2 + 𝑦̅2 = 𝑟) 

 

Now dividing by 2 we get: 

         
1

2
(𝐴 + 𝜋𝑟2) ≤

1

2
𝑙𝑟 . 
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But the geometric mean of two positive numbers is less than or      

equal to the arithmetic mean: 

(∗)                      √(𝜋𝑟2)(𝐴) ≤
1

2
(𝐴 + 𝜋𝑟2) ≤

1

2
𝑙𝑟  

 

So,                     (𝜋𝑟2)𝐴 ≤
1

4
𝑙2𝑟2      and        𝐴 ≤

1

4𝜋
𝑙2.    

 

For the equality to hold, (∗) implies that 𝐴 = 𝜋𝑟2 and 𝑙 = 2𝜋𝑟. 

 

From (1),  𝑥𝑥′ + 𝑦̅𝑦′ = 0. But differentiating 𝑥2 + 𝑦̅2 = 𝑟2 gives: 

𝑥𝑥′ + 𝑦̅𝑦̅′ = 0 ⟹  𝑦̅′ = 𝑦′. 

 

Thus, 𝑦(𝑠) = 𝑦̅(𝑠) + constant.  

 

 And since 𝑥 = 𝑥̅,  and  𝛾 = (𝑥(𝑠), 𝑦(𝑠)),   

 we have:  

         𝑟2 = 𝑥2 + 𝑦̅2 = 𝑥2 + (𝑦 − 𝑐𝑜𝑛𝑠𝑡)2,  and 𝛾 is a circle.    
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Ex.     Does there exist a simple closed curve in ℝ2 with length equal to 4 enclosing  

          an area of 2? 

 

 No! By the isopermetric inequality: 

𝐴 ≤
1

4𝜋
𝑙2,  but      2 >

1

4𝜋
(4)2 =

4

𝜋
 .   

 

 

 

Ex.  Does there exist a simple closed curve in ℝ2 with length 4 enclosing  

       an area of 1?  If so, find an example. 

 

       𝑙 = 4, 𝐴 = 1,    does satisfy the isopermetric inequality since 

                       1 ≤
1

4𝜋
(4)2 =

4

𝜋
 . 

 

      The isoperimetric inequality is actually true for piecewise smooth 

       curves, so let’s find a rectangle whose perimeter is 4 and whose  

       area is 1.  We could solve simutaneous equations to do that but  

       clearly a square of side 1 works. 

 

                                 

 

 

 

 

1 

1 
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The Four Vertex Theorem 

 

Def. A simple closed curve, 𝛾, is called convex if a line segment joining any two  

       points in the interior of 𝛾 lies entirely in the interior of 𝛾. 

 

 

 

 

 

                   Convex                                          Not Convex 

 

 

Def.  A vertex of a curve, 𝛾(𝑡), in ℝ2 is a point where 
𝑑𝜅𝑠

𝑑𝑡
= 0.    

 

 

Recall that we saw earlier: 

 

𝜅𝑠 =
𝑥′𝑦′′−𝑥′′𝑦′

((𝑥′)2+(𝑦′)2)
3
2

           where 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)).  
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Ex.  Find all of the vertices of the ellipse 𝛾(𝑡) = (3 cos 𝑡 , 2 sin 𝑡). 

 

𝑥(𝑡) = 3 cos 𝑡  ,    𝑥′ = −3sin 𝑡 ,     𝑥′′ = −3 cos 𝑡 

𝑦(𝑡) = 2 sin 𝑡  ,     𝑦′ = 2 cos 𝑡 ,        𝑦′′ = −2sin 𝑡 

 

𝜅𝑠 =
(−3sin 𝑡)(−2 sin 𝑡)−(−3 cos 𝑡)(2cos 𝑡)

((−3 sin 𝑡)2+(2cos 𝑡)2)
3
2

   

 

𝜅𝑠 =
(3)(2)

(32 sin2 𝑡+22 cos2 𝑡)
3
2

 = 6(9 sin2 𝑡 + 4 cos2 𝑡)−
3

2  

 

  
𝑑𝜅𝑠

𝑑𝑡
= −9(9 sin2 𝑡 + 4 cos2 𝑡)−

5

2(18(sin 𝑡)(cos 𝑡) − 8(sin 𝑡)(cos 𝑡))  

 

𝑑𝜅𝑠

𝑑𝑡
=

−90sin 𝑡 cos 𝑡

(9 sin2 𝑡+4cos2 𝑡)
5
2

= 0 ;  where  sin 𝑡 = 0 or cos 𝑡 = 0.  

 

 So verticies when 𝑡 = 0,
𝜋

2
, 𝜋,

3𝜋

2
. 

 

 

 

 
𝑡 = 0 

𝑡 = 𝜋/2 

𝑡 = 𝜋 

𝑡 = 3𝜋/4 
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Theorem (Four Vertex Theorem): Every convex simple closed curve in   

 ℝ2 has at least four vertices.   

 

Ex.  Find the vertices of 𝑦 = 𝑠𝑖𝑛𝑥.  

 

        𝛾(𝑡) = (𝑡, 𝑠𝑖𝑛𝑡) 

          𝑥(𝑡) = 𝑡          𝑦(𝑡) = 𝑠𝑖𝑛𝑡 

         𝑥′(𝑡) = 1       𝑦′(𝑡) = 𝑐𝑜𝑠𝑡 

        𝑥′′(𝑡) = 0      𝑦′′(𝑡) = −𝑠𝑖𝑛𝑡. 

        

         𝜅𝑠 =
𝑥′𝑦′′−𝑥′′𝑦′

((𝑥′)2+(𝑦′)2)
3
2

=
(1)(−𝑠𝑖𝑛𝑡)

(1+cos2 𝑡)
3
2

=
−𝑠𝑖𝑛𝑡

(1+cos2 𝑡)
3
2

 

 

       
𝑑𝜅𝑠

𝑑𝑡
=

(1+cos2 𝑡)
3
2(−𝑐𝑜𝑠𝑡)−(−𝑠𝑖𝑛𝑡)(

3

2
)(1+cos2 𝑡)

1
2(2𝑐𝑜𝑠𝑡)(−𝑠𝑖𝑛𝑡)

(1+cos2 𝑡)3
 

              =
(1+cos2 𝑡)

1
2[−(1+cos2 𝑡)(𝑐𝑜𝑠𝑡)−3sin2 𝑡(𝑐𝑜𝑠𝑡)]

(1+cos2 𝑡)3
 

              =
𝑐𝑜𝑠𝑡(−1−cos2 𝑡−3sin2 𝑡)

(1+cos2 𝑡)
5
2

= 0   

 

          (−1 − cos2 𝑡 − 3 sin2 𝑡) < 0 for all 𝑡.   

                  (1 + cos2 𝑡)
5

2 > 0  for all 𝑡.   

 

                    𝑐𝑜𝑠𝑡 = 0  ⟹ 𝑡 =
2𝑛+1

2
𝜋;    𝑛 ∈ ℤ are the vertices. 
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 Ex.  Find the vertices of 𝛾(𝑡) = (𝑒𝑡𝑐𝑜𝑠𝑡, 𝑒𝑡𝑠𝑖𝑛𝑡). 

 

  𝑥(𝑡) = 𝑒𝑡𝑐𝑜𝑠𝑡                                          

 𝑥′(𝑡) = −𝑒𝑡𝑠𝑖𝑛𝑡 + 𝑒𝑡𝑐𝑜𝑠𝑡                     

𝑥′′(𝑡) = −2𝑒𝑡𝑠𝑖𝑛𝑡   

                                 

   𝑦(𝑡) = 𝑒𝑡𝑠𝑖𝑛𝑡  

 𝑦′(𝑡) = 𝑒𝑡𝑐𝑜𝑠𝑡 + 𝑒𝑡𝑠𝑖𝑛𝑡               

𝑦′′(𝑡) = 2𝑒𝑡𝑐𝑜𝑠𝑡. 

 

𝜅𝑠 =
𝑥′𝑦′′ − 𝑥′′𝑦′

((𝑥′)2 + (𝑦′)2)
3

2

 

 

   𝜅𝑠 =
(𝑒𝑡(−𝑠𝑖𝑛𝑡+𝑐𝑜𝑠𝑡))(2𝑒𝑡𝑐𝑜𝑠𝑡)−(−2𝑒𝑡𝑠𝑖𝑛𝑡)(𝑒𝑡)(𝑐𝑜𝑠𝑡+𝑠𝑖𝑛𝑡)

[𝑒2𝑡(𝑐𝑜𝑠𝑡−𝑠𝑖𝑛𝑡)2+𝑒2𝑡(𝑐𝑜𝑠𝑡+𝑠𝑖𝑛𝑡)2]
3
2

 

 

   𝜅𝑠 =
2𝑒2𝑡

𝑒3𝑡(2)
3
2

=
1

𝑒𝑡√2
=

√2

2
𝑒−𝑡  

 

   
𝑑𝜅𝑠

𝑑𝑡
= −

√2

2
𝑒−𝑡 ≠ 0,    so no vertices. 

 

 

𝛾(𝑡) = (𝑒 .1𝑡𝑐𝑜𝑠𝑡, 𝑒 .1𝑡𝑠𝑖𝑛𝑡). 



13 
 

Notice that since the curvature of a circle is constant, every point of a circle is a 

vertex. 

 

 

Ex.  Find the vertices of the limacon 𝛾(𝑡) = ((1 + 2𝑐𝑜𝑠𝑡)𝑐𝑜𝑠𝑡, (1 + 2𝑐𝑜𝑠𝑡)𝑠𝑖𝑛𝑡). 

 

        𝑥(𝑡) = (1 + 2𝑐𝑜𝑠𝑡)𝑐𝑜𝑠𝑡                𝑦(𝑡) = (1 + 2𝑐𝑜𝑠𝑡)𝑠𝑖𝑛𝑡 

      𝑥′(𝑡) = −𝑠𝑖𝑛𝑡 − 4𝑠𝑖𝑛𝑡𝑐𝑜𝑠𝑡           𝑦′(𝑡) = 𝑐𝑜𝑠𝑡 + 2(cos2 𝑡 − sin2 𝑡)                                                                                        

                 = −𝑠𝑖𝑛𝑡 − 2𝑠𝑖𝑛2𝑡                            = 𝑐𝑜𝑠𝑡 + 2𝑐𝑜𝑠2𝑡 

     𝑥′′(𝑡) = −𝑐𝑜𝑠𝑡 − 4𝑐𝑜𝑠2𝑡               𝑦′′(𝑡) = −𝑠𝑖𝑛𝑡 − 4𝑠𝑖𝑛2𝑡 

      

𝜅𝑠 =
𝑥′𝑦′′ − 𝑥′′𝑦′

((𝑥′)2 + (𝑦′)2)
3

2

 

      

  =
(−𝑠𝑖𝑛𝑡−2𝑠𝑖𝑛2𝑡)(−𝑠𝑖𝑛𝑡−4𝑠𝑖𝑛2𝑡)−(−𝑐𝑜𝑠𝑡−4𝑐𝑜𝑠2𝑡)(𝑐𝑜𝑠𝑡+2𝑐𝑜𝑠2𝑡)

((−𝑠𝑖𝑛𝑡−2𝑠𝑖𝑛2𝑡)2+(𝑐𝑜𝑠𝑡+2𝑐𝑜𝑠2𝑡)2)
3
2

 

 

   =
9 + 6(𝑠𝑖𝑛𝑡)𝑠𝑖𝑛2𝑡 + 6(𝑐𝑜𝑠𝑡)𝑐𝑜𝑠2𝑡

(5 + 4(𝑠𝑖𝑛𝑡)𝑠𝑖𝑛2𝑡 + 4(𝑐𝑜𝑠𝑡)𝑐𝑜𝑠2𝑡)
3

2

 

 

Notice that:  

       (𝑠𝑖𝑛𝑡)𝑠𝑖𝑛2𝑡 + (𝑐𝑜𝑠𝑡)𝑐𝑜𝑠2𝑡 = 2sin2 𝑡(𝑐𝑜𝑠𝑡) + 𝑐𝑜𝑠𝑡(1 − 2sin2 𝑡) 

                                                        = 𝑐𝑜𝑠𝑡. 
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So we have:      𝜅𝑠 =
9+6𝑐𝑜𝑠𝑡

(5+4𝑐𝑜𝑠𝑡)
3
2

 .    

 

                      
𝑑𝜅𝑠

𝑑𝑡
=

24𝑠𝑖𝑛𝑡+12𝑠𝑖𝑛𝑡𝑐𝑜𝑠𝑡

(5+4𝑐𝑜𝑠𝑡)
3
2

= 0  

              ⇒                      24𝑠𝑖𝑛𝑡 + 12𝑠𝑖𝑛𝑡𝑐𝑜𝑠𝑡 = 0 

                                        12𝑠𝑖𝑛𝑡(2 + 𝑐𝑜𝑠𝑡) = 0. 

                                                   𝑡 = 0, 𝜋  (since the curve is 2𝜋 periodic). 

 

Thus this limacon has vertices at 𝛾(0) = (3,0),      𝛾(𝜋) = (1,0). 

 

 

 

 

 

 

 

 

 

 

Note:  The limacon does not violate the 4 vertex theorem because is in not a 

simple closed curve. 

 1                                                3 


