Simple Closed Curves in R?/The Isoperimetric Inequality/

The Four Vertex Theorem

Def. A simple closed curve in R? is a closed curve in R? that has no self

intersections.

Ex. y(t) = (acost, bsint),t € R, an ellipse, is a simple closed curve

in R2,
b
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Ex. The limacon, y(t) = ((1 + 2cost) cost), (1 + 2cost)sin t), teR
is a closed curve but not a simple closed curve:

y (1)
t =2?"+ 2nmand t =4?”+ 2nm

n an integer.




Every simple closed curve has a bounded interior and an unbounded exterior. For
a simple closed curve, ¥, we say Y is positively oriented if the signed normal ﬁS)

points into the interior of ¥ at every point of y.

Positively Oriented Negatively Oriented
| Ns/

g

Theorem: The total signed curvature of a simple closed curve in R? is +2m

l
j K (s) ds = +2m.
0

The Isoperimetric Inequality

Given a simple closed curve y of fixed length [ = [(y), what can we say about the
area, A(y), enclosed by y? The isoperimetric inequality gives us an upper bound
on A(y). However, we will need a collorary of Green’s theorem to establish this
inequality.



Green’s Theorem: Let f(x, y) and g(x,y) be smooth functions and let
Y be a positively oriented simple closed curve that
bounds a region D € R?. Then:

[l, GE=Dydxdy = [, f(x,y)dx +g(x,y)dy
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Cor: Let )/(t) = (x(t), y(t)) be a positively oriented closed curve of
length | bounding a region D, then:

area(D)=fy xdy=—fy ydx=%fy (—ydx +xdy).

Proof: area(D) = [[, 1dxdy.

_ _ 99 _of _
Let g(x,y) =x, f(x,y)=0,then ox 9y 1.

Now apply Green’s Theorem:
area (D) = [[, 1dxdy = fy flx,y)dx + g(x,y)dy = fy x dy.

_ _ 0g _ 9f _
Now let f(x,y) = —y, g(x,y) =0, then s ay—l

Now apply Green’s Theorem:

area(D) = [f, 1dxdy = fy flx,y)dx + g(x,y)dy = — fy y dx .



Finally, fy xdy — fy y dx = 2(area of D) so we can write:

%fy (x dy — y dx) = area of D.

Theorem (Isoperimetric Inequality): Let ¥ be a smooth simple closed curve in
R? with I(y) = length of ¥ and A(y) = area bounded by y. Then:

AW < = ()’

and this equality holds if, and only if, ¥ is a circle.

Proof (We will prove this for regular curves, but it’s actually true for C! curves):
Let L1 and L, be parallel lines that are tangent to ¥ such that y

is contained between them.

Let a be a circle that is tangent to L1 and L, that doesn’t intersect J.

Let ¥ be parametrized by its arc length, s, and let [ = [(y).

Soy(s) = (x(s), y(s)), and we can parametrized the circle by:

a(s) = (f(s),y(s)) = (x(s),y(s)) i.e. take X(s) = x(s).

So, x%+y?%=r?2,



d(sj

x(0) =x(0) =r

x(sg) = x(s¢) = —r

f2+}—]2=r2

.Ll | | | | | | L2.

By Green’s Theorem, the area bounded by ¥, 4, is:

A=fy xdy=f0lx2—3; ds.

The area bounded by the circle «, /T, is:

- _ l_d
A=nr?=—[ ydx=—f0yd—§ ds.

Adding the two areas we get:

A+mr? = fol(x y' —x'y)ds < fol\/(xy’ — x'y)? ds.




Claim: (xy' — x'9)? < (x%2 + y2)((x")? + (v")?).

(ry’ —x'y)? =x*(y)? - 2xy'x'y + (x)?¥*.

But 0 < (Jy’ + x x")? = y2(y")? + 2yy'x"x + x%(x")? (D

SO we can write:

_ny/xr}—] < }—,2(),/)2 +x2(x’)2.
Gy’ —x'y)? <222 + 22 ()2 + GHN? + ()?y?
= (2 + D)2+ DY
So

Cry' —x'P)* < (o + 52D + ()2,

Now we have:

A+nar? < fol J&y' —x'y)? ds
l —
< [ JGTF D@ + G ds
= fol x? + y? ds (since y is unit speed)

_ fol X2+ y2 ds =Ir (since /X2 + y2 =1)

Now dividing by 2 we get:

1 2y <1
2(A+7tr )Szl’r.



But the geometric mean of two positive numbers is less than or

equal to the arithmetic mean:

2 1 2y <1
(%)  (mr )(A)SZ(A+7TT )Szlr
2 1,2 2 1,5
So, (mr<)A S4l r and A S—4nl .

For the equality to hold, () implies that A = tr? and | = 27r.

From (1), xx' + ¥y’ = 0. But differentiating x2 + y2 = 72 gives:

xx'+yy'=0= y' =y
Thus, y(s) = y(s) + constant.
And since x = X, and Yy = (x(s),y(s)),

we have:

r? =x?%+ )72 =x%+ (y — const)?, and y is a circle.



Ex. Does there exist a simple closed curve in R? with length equal to 4 enclosing

an area of 2?

No! By the isopermetric inequality:
1 1 4

< —]? —_ 2 —Z
A_4nl,but 2>4n(4) —.

Ex. Does there exist a simple closed curve in R? with length 4 enclosing

an area of 1? If so, find an example.

=4, A =1, doessatisfy the isopermetric inequality since
1 4
1<—(4)?2=-.
- 471'( ) T
The isoperimetric inequality is actually true for piecewise smooth
curves, so let’s find a rectangle whose perimeter is 4 and whose

area is 1. We could solve simutaneous equations to do that but

clearly a square of side 1 works.




The Four Vertex Theorem

Def. A simple closed curve, Y, is called convex if a line segment joining any two

points in the interior of ¥ lies entirely in the interior of ).

P S
Convex Not Convex
. 2. . dKs
Def. A vertex of a curve, y(t), in R is a point where Ik 0.

Recall that we saw earlier:

x’y”—x”y’

((x)2+(y")?)2

where y(t) = (x(t),y(t)).

=
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Ex. Find all of the vertices of the ellipse y(t) = (3 cost, 2 sint).

x(t) =3cost, x'=-3sint, x" =-3cost

y(t) =2sint, y'=2cost, y'" =-2sint

(—3sint)(—2sint)—(—3cost)(2cost)
Ks =

((—=3sint)2+(2 cos t)z)%

3)(2 _3
Kg = (3)(2) == 6(9sin’t + 4 cos?t) z
(32sin? t+22 cos?t)2

dKg

5
" —9(9sin? t + 4 cos? t) 2(18(sin t)(cos t) — 8(sin t)(cos t))

dkg —90sintcost

- = = 0; where sint =0orcost = 0.
(9sin? t+4 cos? t)2

. . T 31
So verticies when t = O,E,T[, )

2

t=m/2

/—?_

|t =3n/4



Theorem (Four Vertex Theorem): Every convex simple closed curve in

R? has at least four vertices.

Ex. Find the vertices of y = sinx.

y(t) = (t,sint)

x(t) =t y(t) = sint
x'(t)=1 y'(t) = cost
x"(t) =0 y"(t) = —sint.

x'y""-x""y"  (1)(-sint) _  -—sint
3 = 3 =
((xH2+(y")2)z2  (1+cos?t)z  (1+cos?t)

Kg = 3
2

dis (1+cos? t)%(—cost)—(—sint)(%)(1+cos2 t)%(ZCost)(—sint)

dt (14+cos?t)3

1
__ (14cos? t)2[—(1+cos? t)(cost)-3 sin? t(cost)]
o (14+cos?t)3

cost(—1—cos? t—3sin? t)
= = =0

(1+cos?t)2

(=1 —cos?t —3sin?t) < Oforall t.

5
(14 cos?t)z > 0 forall t.

2n+1
cost=0 =t= ST M € Z are the vertices.

11
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Ex. Find the vertices of y(t) = (etcost, etsint).

x(t) = etcost

x'(t) = —elsint + etcost

N
x"'(t) = —2etsint /C-E
y(t) = etsint \—/
__-//

! — ,t tog
y'(t) = e'cost + etsint =

y"'(t) = 2etcost. y(t) = (ettcost, eltsint).

X’y” _ x”y’

Ks =

()2 + )

(et(—sint+cost))(2e tcost)—(-2etsint)(et)(cost+sint)
Kg = 3
[e2t(cost—sint)?+e?t(cost+sint)?]2

. — 2e?t 1 42 ot
S 37 th o

dx V2o _
S = _1Zpt # 0, sono vertices.
dt 2
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Notice that since the curvature of a circle is constant, every point of a circle is a
vertex.

Ex. Find the vertices of the limacon y(t) = ((1 + 2cost)cost, (1 4+ 2cost)sint).

x(t) = (1 + 2cost)cost y(t) = (1 + 2cost)sint
x'(t) = —sint — 4sintcost y'(t) = cost + 2(cos? t — sin? t)
= —sint — 2sin2t = cost + 2cos2t
x'"'(t) = —cost — 4cos2t y''(t) = —sint — 4sin2t

X’y” _ X”y’
Kg =

(2 + ()

__ (=sint-2sin2t)(-sint—4sin2t)—(—cost—4cos2t)(cost+2cos2t)

3
((=sint—2sin2t)%+(cost+2cos2t)?)2

9 + 6(sint)sin2t + 6(cost)cos2t

3
(5 + 4(sint)sin2t + 4(cost)cos2t)z

Notice that:

(sint)sin2t + (cost)cos2t = 2 sin® t(cost) + cost(1 — 2 sin® t)

= cost.
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9+6cost
Sowehave: K =—"T—"3.

(5+4cost)2

diks _ 24sint+12sintcost

dt s =0
t (5+4cost)2
= 24sint + 12sintcost = 0

12sint(2 + cost) = 0.

t = 0,7 (since the curve is 27 periodic).

Thus this limacon has vertices at y(0) = (3,0), y(m) = (1,0).

e
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Note: The limacon does not violate the 4 vertex theorem because is in not a
simple closed curve.



