Space Curves and the Frenet Formulas

A plane curve is essentially defined by its signed curvature, however a curve
in R3 is not defined by its curvature. For example, both the circle x?% + y2 =

1 1, .1
in R? and the helix y(t) = (E cost,>sint,> t) have curvature 1 everywhere.

For curves in R3 we need another type of curvature called Torsion to essentially
define a curve (along with the curvature). Torsion measures the extent to which a
curve is not contained in a plane (plane curves have zero Torsion).

Let ]/(S) be a unit speed curve in ]R?’, and let T(s) = )/'(S) be its unit

tangent vector. Since ”T(S)” = 1, we have:

Y'(s)y'(s)=1
Now differentiate:

2y'(s) v"(s) =0

So¥"'(s) is perpendicular to ' (s) in R3. Since ||y"' (s)|| = k(s) and if
we assume that k(s) # 0, we can define the principal normal of y(s), N (s), to
be the unit vector such that:
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o 4 N(s) = K(s)
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In particular, N (s) is perpendicular to T(s) = v'(s). Since T(s) and
IV(S) are perpendicular unit vectors in ]Rg, the vector, §(S), called the
binormal vector of ¥ at y(s), defined by:

B(s) =T(s) x N(s)

is a unit vector that is perpendicular to both T(s) and N (s) (and hence the
plane that contains T(S) and IV(S)) The unit vectors f, ]V, and § are an

orthonormal basis for R3 ( (f, ﬁ, §) is called a Frenet Frame).
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B=TxN, N=BxT, T=NxB.
The second and third relationships above follow from the first relationship and:

vVX(WXU) =W -w— (V-w)

For example:
B=T x N
BxT=T x NxT
= (T-T)N—(T-N)T

I
=1

Recall that for vector functions %, ¥ in IR3 we have:

—

L () x 3(s)) = S x B(s) +7(s) x

Thus we have:

B'(s)=T'(s) x N(s)+T(s) x N'(s)
But:

N(s) =—=T'(s) === (1"())

So we can write:
B'(s) =T(s) x N'(s).

Thus B'(s) is perpendicular to T(s) or B'(s) = 0.



Since ||§(S)|| = 1, we once again have:
B(s)-B(s) =1 (now differentiate)

2B(s) - B'(s) = 0.

Hence if B (s) # 0 then B(s) and B'(s) are perpendicular. Thus B’ (s)
is perpendicular to §(S) and T(S)
so B'(s) is parallel to N(s), hence:

B'(s) = —1(s) N(s).

The minus sign is used to reduce the number of minus signs later.
7(S) is called the Torsion of y at ¥ (s). Note that the Torsion is only

defined when the curvature is non-zero. If B'(s) = 0 then 7(s) = 0.

Prop: Let ¥ (t) be a regular curve in R3 with nowhere vanishing curvature, then:
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Proof: First let’s do the case where ¥ has unit speed.

-

B'(t) = —t(t) N(t)
N -B'(t) = (—1(0) (N(©) - N(©)) = —(t)



So we have:
t(®) = —N(@©) B'©) = -N©) - (T©®) x ﬁ(t))'
= —N(t) - (T(t) X N'(t) +T'(t) X IV(t))
— _N(t)- (?(t) x ﬁ'(t))

Now we can write:

N = —=T'(0) == (v ®)

T(t) = ——=y"(®) - (y'(t) x %(ﬁy”@)))

_ —%)/”(t) . <]/’(t) X (%]/”,(t) _ K;C(Zt) ]/”(t)))

But:
y'@® - (y'@®) x y"@®)) =0

sincey'(t) X y" (t) is perpendicular to "' (t).

In addition:

'@ (' xy"®)=-y"® - (¥'®© x y"®)

since V-(Wxu)=—-u-(WXv).



So:
(&) = 5 1" (¢) - (y'(@®) x y"(@®)).

K

Since ¥ is unit speed, y'(t) is perpendicular to Y’ (t), thus:
ly' (@) x y"@OI = lly" @I lly" @Il = lly" Ol = x(©).

So:

G®xy ®)Y ©

T(t) = ! 124 2
ly ®© x y @

For a general parametrization Y (t) of ¥, let s be arc length, then:

dy _ dsdy
dt  dtds

d’y (ds)z d?y  d?sdy
dt2 — \dt

ds? dt? ds
O (8238 (5) () + ()
dt3  \dt/ ds3 dt \dt2/) \ds2 dt3/) ds°



Hence:

dy  d?*y ds\3 (dy  d%y

L x—L == L x —=

dt  dt? dt ds  ds?
d3y (dy  d?%y ds\® (d3y (dy  d?y
— . (Ex—L)=(= — . [ x —=
dt3 \dt dt? dt ds3 ds  ds?

But we know if ¥ is unit speed, then:

2
V <dV d V) dg)/.(ﬂ 5 d V)

2 "
dy . d%

dt ™ gi2

dVXdV

%ds

Note: The absolute value of T is unchanged under reparametrization.

y(t) = (2cost, 2sint, t

Ex. Calculate the Torsion of the circular helix: )

y(t) = (acost,asint,bt).

y'(t) = (—asint,acost,b)

y"(t) = (—acost,—asint,0)

y"'(t) = (asint,—acost,0)

)



l 7 X
Y@ xy"(t) =|-asint acost b
0

—acost —asint

= (ab sin t)7 — (ab cos t)] + ak.
ly' () x ¥y"(®)||*> = a?b? sin? t + a?b? cos? t + a* = a?(a? + b?)

(Y @®©xy"@®) - y" ()

= (absint,— abcost,a?) - (asint,—acost,0)

= a®bsin?t + a?b cos?t = a?b.

_ (yi % y”) ) yur _ azb _ b
”y' x ‘}/””2 aZ(aZ_l_bZ) a2+b2 *

7(t)

Notice that if b = 0, i.e. the helix becomes a circle on the x-y plane, T = 0.



Prop: Let Yy be aregularcurvein R3 with nowhere vanishing curvature
(so that the Torsion T is defined). Then the image of ¥ is contained in a

plane if, and only if, T is zero at every point.

Proof: Assume Y liesin a planein R3. Also assume that Y is
parametrized so that it is unit speed. Since y lies in a plane there
exists a constant unit vector, U, such thaty * ¥ = d, where d is a
constant. Remember the equation of a plane in R3 is:

(x,v,z) (a,b,c) =d; so y-v=d.
Now differentiate:

dv . dy

Y - % + % v = 0.
dv R dy =
But — = 0 since ¥ is a constant vector and — = T(s) so
ds ds
T(s)-v=0.

Now differentiate again:

dT - - d?
ds v+T %—0

—

aT — — N

But — = kN(s),so N(s)-v = 0.
ds

Thus, IV(S) and T(S) are perpendicular to v and we know that

B(s) = f(s) X ﬁ(s) is parallel to ¥ and a unit vector.

So, B(s) = Bor B(s) = —% forall s.
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In either case, B(s) is a constant vector so we have:
B'(s) = —1(s)N(s)
0 = —7(s)N(s)

= 1(s) = 0.

Now suppose T(s) = 0 forall s. Thus, B(S) is a constant vector:

—

L) B) =y F+y(s) & =T() Bs) =0

Thus, y(s) - B = constant = d. So Y liesin the plane (x,y, z) - B =d.

So far we know for a unit speed curve:
T'(s) = K(s)ﬁ(s)
B'(s) = —1(s)N(s).

But what about N’ (s)?
N(s) = B(s) x T(s)
N'(s) = B(s) xT'(s) + B'(s) x T(s)
= B(s) x (k(s)N(s)) = 1(s)N(s) x T(s).
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Snce NXB=T and TXN =8 we get:

N'(s) = — k(s) T(s) + t(s)B(s).

Theorem: (Frenet Formulas) for a unit speed curve y in R3 with

nowhere vanishing curvature we have:
T'(s) = k(s) N(s)
N'(s) = —k(s) T(s) + ©(s)B(s)
B'(s) = —T(s)ﬁ(s)

Or in matrix form:

T'(s) 0 k() 0 \/[/T(s)
N'@G) |=|-k 0 () || N(s)
B'(s) 0 —7(s) 0 J\EB(

Note that for any regular curve, ¥ (t), (not necessarily unit speed) in R3

with nowhere vanishing curvature the Frenet Formulas become:
T'(t) = k() ly' (®IIN ()
N'(8) = =kl OI T@® + @ lly' OIB®
B'(t) = —t@lly' ®OIN©)
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since:

dT  dT ds dT
Pl ly' ()l E

AN dﬁds
et O
dB  dBds

dB

/

dt ds dt ”]/ ( )” ds

One application of the Frenet Formulas is the following theorem

Fundamental Theorem of Local Theory of Curves

Given differentiable functions k(s) > 0 and 7(s),s € (a, b) there
exists a regular parametrized curve y: (a, b) = R3 such that s is the arc
length, K (s) is the curvature, and T(S) is the Torsion of Y. Also any other

curve Y, satisfying the same conditions, differs from y by a rigid motion

(i.e. rotation and translation).

Ex. Lety(t) = (3t — t3,3t2%,3t + t3).

= o o dT dN dB
Calculate T, N, B, Kk, T, AT ,andE.
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y'(t) = (3 — 3t?,6t,3 + 3t?)
=3(1 —t32t,1+t?)
y"'(t) = (—6t,6,6t) = 6(—t,1,t)
y'"'(t) =(-6,0,6) = 6(—1,0,1)

y'(®)
Iy’ (Ol

Iy’ Ol = VoL — t2)2 + 26)% + (1 + t2)?]
= 3vV2 + 4t2 + 2t
= 3v2(1 + t?)

T =

So we can write:

(1-t2, 2t, 1+t?)

I ="—%aw

Now let’s calculate the curvature K(t).

_ MM GESHG]

t
(1) THOIE
{ 7 X
'@ xy'@®)=| -6t 6 6t
3 —3t%2 6t 34 3t?

= —18(—1 +t%, —2t,1 + t2).
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Iy (&) x y'(Oll = 18v2(1 + 2.

18V2(1+t2 1
k(t) = ( )3 = >
54\/7(1+t2) 3(1+t2)
1dT 1 a7
= 1dT 15
N - K ds K %
ds , 5
==y Ol = 3v2(1 + ¢

dT 1( —4t 2—2t2 )
(1+t2)2 ’ (1+t2)2 "’

dt /2

3(1+t2)° 1 -4t 2-2t?
3v2(14t2) (\/5) ((1+t2)2 " (14t2)2 ’0)

=l
Il

— -2t 1—t2
N = ((1+t2) ' (1+t2) ’0)'

? 7 X
RN . 1-t2 2t 1+t2
B=T X N =|Za+2) Vza+t?) z(+t?)
-2t 1-t2 0
1+t2 1+t2
. 7 j k

T za+ez |[1—-t* 2t 1+¢t?
-2t 1-t* 0
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R —_ 1 - - -
B= oy (1 +tHA —tDT—2t(1 + )] + (1 + t2)2k)
— 1 - - -

B =g (0 = D=2 + (1 + 9K).

(yl x yll)_ylll
oy xR
y' X y" =18(—1+t% -2t,1+t?)
ly" x y"ll = 18vV2(1 + t%)
y’”(t) = 6(—1, 0, 1)
L= [18(-1+t2,—2t,1+t2)][6(-1,0,1)] 1
B 2(18)2(1+t2)> T 31422

By the Frenet Formulas:
T'(s) = k(s) N

IV’(S) = —«T +1B
B'(s) = —TtN
But we know:

dT _dTds dN _dNds_  dB _ dBds

dt  dsdt’ dt dsdt’ dt  dsdt’
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We now have T(t), ﬁ(t), and §(t) s0:

_ dTds _ (KN)(”V 0l)

dt ds dt
oy, =2t 1—t?
(1+t2) -(3v2) -1+t )(1+z:2 " 142 0)
( 1—t2 )
T 1+t \14e2 Z 142
__V2 - (—2t,1 —t2,0).

(1+¢2 )

dN  dNds

— == (- kT + TB)“V (t)||
) ) (1+¢) 2 2
_ _m_(}/—z) .ﬁ(1+t2)(1 t?,2t,1+t%)

(3v2) ((+t2))(t2—1 —2t,1+t?)

(1+t ) (1 —t%,2t,1+t%) + (1+1tz)2 (t* - 1,-2t,1+¢%)

3(1+t2)2

a0,
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dB  dBds
Pl —N (ly' ®ID
Zt
2
(1+¢2)
dT dN
Note: We could have also found —T dIZ and — by differentiating

the expressions we found for T(t), N(t), and B(t).

Ex. Let y(t) be a regular smooth curve in R3 with ¥(0) = (3,1,0),
V(0) = (2,1,2), ¥"(0) = (12,9,6), and " (0) = (1,8,13).

B 0 L. A - .
Find s’ (0), s (0), ,N,B, Kk, T, T ,and 7 att = 0, where s(t) is

the arc length function.

sos'(0) = ly’ (Ol = l1(2,1,2)]]

s'(0) =22 + 12 + 22 = 3.

To find s''(0), let’s find an expression for s"'(t).

If y(©) = (x(©), y(8),z(t)) then y' () = (x'(t),y'(£),2'(¢)) and
S =y ol =V&)2+ ) + &)
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£ L (B ()4 6) + 6

— (%) ((x/)z + (y/)z + (Z/)Z)—E(le 4 + zy/yu + 277 //)

1 ! ! AN 14 1 14
iyon GYE) Gy

So

S”(O) —

1 ’ ' , . ., .,
o ¢ (0,y'(0),2'(0)) - (x(0), (0, 2" (0)

=2(2,1,2)-(12,9,6)

= 15.
= . v'(0) _(212) 212
(o) = ly'(ol 3 (3 "3’ 3)'

To find IV(O), let’s find an expression for IV(S) in terms of t.

N(s) = %(%)

dy
alde
dy 2 dy dt) ds
dy _ at and a7y _ 4| a dt (by the chain rule)
ds 4 ds?  ds % % '
t t

5 (by the quotient rule).
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o
al i) Ly gL
d?y _ dt/ _ dt\dt?) dt\ g¢2
ds? ds - ds\3 '
at (@)

Soatt = 0, we get:

d?y _ 3(129,6)-(2,1,2)(15) _ (6,12,—12) (24 —-4) (_ 4 _)
dsz 33 - 27 9’9’

14 — .
— ||, soatt = 0 we get:
2
= (_)2 i (_ﬁ) — [36_2
9 9 81 3

2
wmo B=E)-OG4-)-G-D)
ds 2 9°9 9 3°3 3

B(0) = T(0) x N(0)
i) -]_> I_é - - 7
2 1 2 T Tk 1 L L -
= E 5 5 262 1 2 =6(—6l+6]+3k)
12z 2 1 2 -2
3 3 3
_(_Z 2 l)
—\ 3’3’3/
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n

(Y xy )y

rt="—"",2
Iy < v
Ik .
Y xy"=12 1 2/=-12t+ 12+ 6k
12 9 6

Iy’ x y"|I? = 122 + 122 + 6% = 324.
' xy")-y" =(-12,12,6) - (1,8,13) = 162

162 1
T=—=-=,
324 2

From the Frenet formulas we have:

= Yoll5 = Iy ©lldw
A _ ANAS ()| =T + B
dB _ dBds

== olg = - llvNe



Att = 0:

dt 3

dﬁ = 2
— = Iy’ (0)|| (=, (0)T(0) + T(0)B(0))

-@(3E4 +2(-329) -

dB 1\ /1 2
=l @I TON© = -3(3) (5.5,

fiﬂwmwmm®=49@%*3=@§”9
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