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Plane Curves  

 

For plane curves it is possible to define curvature so that it can be positive 

or negative. 

Suppose 𝛾(𝑠) is a unit speed parameterization of a plane curve 𝛾. Then 𝛾′(𝑠) is 

a unit tangent vector to 𝛾 at 𝛾(𝑠). Let’s call this tangent vector, 𝑇⃗ = 𝛾′(𝑠).  

Since 𝛾 is a plane curve there are two unit vectors perpendicular to 𝑇⃗ . 

 

We will choose the signed unit normal, 𝑁𝑠
⃗⃗⃗⃗  (𝑁1

⃗⃗ ⃗⃗  above), of 𝛾 to be the unit vector 

obtained by rotating 𝑇⃗  counterclockwise by 
𝜋

2
 . 

 

Note:  If 𝑇⃗ = (𝑎, 𝑏) then 𝑁𝑠
⃗⃗⃗⃗ = (−𝑏, 𝑎). 

 

 

 

𝛾(𝑠) 

𝑇⃗  

𝑁1
⃗⃗ ⃗⃗  

𝑁2
⃗⃗ ⃗⃗   
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Since 𝛾′(𝑠) ∙ 𝛾′(𝑠) = 1, by differentiating this equation we get:  

 

𝛾′(𝑠) ∙ 𝛾′′(𝑠) + 𝛾′′(𝑠) ∙ 𝛾′(𝑠) = 0  

or  

𝛾′ ∙ 𝛾′′ = 0.  

 

Thus 𝛾′′ is perpendicular to 𝑇⃗ = 𝛾′(𝑠), just as 𝑁𝑠
⃗⃗⃗⃗  is. Thus we can write: 

𝛾′′(𝑠) = 𝜅𝑠 𝑁⃗⃗ 𝑠 

𝜅𝑠 is called the signed curvature of 𝛾.  

 

Notice that since ‖𝑁⃗⃗ 𝑠‖ = 1 we have: 

𝜅 = ‖𝛾′′(𝑠)‖ = |𝜅𝑠|‖𝑁⃗⃗ 𝑠‖ = |𝜅𝑠| 

where 𝜅 is the (unsigned) curvature of 𝛾. 

 

Ex.    Let’s consider two unit speed parameterization of the unit circle, one going 

          counterclockwise as 𝑠 increases, and one going clockwise as 𝑠 increases 

                             𝛾1(𝑠) = (cos(𝑠), sin(𝑠))  

                            𝛾2(𝑠) = (cos(𝑠), − sin(𝑠)).  

Calculate the signed curvatures of 𝛾1 and 𝛾2 . 

 

 

 

 

𝛾1(𝑠) 
𝛾2(𝑠) 
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      𝑇⃗ 1 = 𝛾′1(𝑠) = (− sin(𝑠), cos(𝑠))  

𝑁⃗⃗ 𝑠(𝑠) = (− cos(𝑠), − sin(𝑠))  

𝛾1
′′(𝑠) = (− cos(𝑠) , − sin(𝑠)) = 1(𝑁𝑠

⃗⃗⃗⃗ ) 

 So the signed curvature of 𝛾1 is equal to 1 at all points. 

 

  

𝑇⃗ 2 = 𝛾′2(𝑠) = (− sin(𝑠), − cos(𝑠))  

𝑁⃗⃗ 𝑠(𝑠) = (cos(𝑠), − sin(𝑠))  

𝛾2
′′(𝑠) = (− cos(𝑠), sin(𝑠)) = −1( 𝑁⃗⃗ 𝑠) 

So the signed curvature of 𝛾2 is equal to −1 at all points. 

 

In general we have: 

 

 

 

     𝜅𝑠 > 0                   𝜅𝑠 < 0                     𝜅𝑠 < 0                     𝜅𝑠 > 0  

 

If 𝛾(𝑡) is a regular plane curve (not necessarily unit speed) we define its unit 

tangent 𝑇⃗ , its signed normal 𝑁𝑠
⃗⃗⃗⃗ , and  its signed curvature 𝜅𝑠 to be those of a unit 

 speed parametrization of 𝛾.  Thus we have: 

𝑇⃗ =
𝑑𝛾

𝑑𝑠
=

𝑑𝛾

𝑑𝑡
𝑑𝑠

𝑑𝑡

=
𝛾′(𝑡)

‖𝛾′(𝑡)‖
 .  

𝑇⃗  

𝑁𝑆
⃗⃗⃗⃗  

𝑇⃗  

𝑁𝑆
⃗⃗⃗⃗  

𝑇⃗  𝑁𝑆
⃗⃗⃗⃗  

𝑇⃗  

𝑁𝑆
⃗⃗⃗⃗  
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𝑁𝑠
⃗⃗⃗⃗  is again obtained by rotating 𝑇⃗  by 

𝜋

2
 counterclockwise and 

 

𝑑

𝑑𝑡
(𝑇⃗ ) =

𝑑(𝑇⃗ )

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝜅𝑠

𝑑𝑠

𝑑𝑡
𝑁𝑠
⃗⃗⃗⃗ = 𝜅𝑠‖𝛾

′(𝑡)‖𝑁𝑠
⃗⃗⃗⃗  . 

 

The signed curvature has a simple geometric interpretation in terms of the rate at 

which the tangent vector rotates. Let 𝛾 be a unit speed curve, then if 𝜑(𝑠) is the 

angle the tangent vector makes with the 𝑥-axis we have: 

𝛾′(𝑠) = (cos(𝜑(𝑠)), sin(𝜑(𝑠)))  

 

 

 

 

 

 

 

 

 

 

 

 

 

         𝜑(𝑠) is called the turning angle of 𝛾. 

) 𝜑(𝑠) 

cos(𝜑(𝑠)) 

sin(𝜑(𝑠)) 

𝛾′(𝑠) 
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Proposition: Let 𝛾(𝑠) be a unit speed plane curve, then  𝜅𝑠 =
𝑑𝜑

𝑑𝑠
  .   

 

Proof:           𝑇⃗ = (cos𝜑 , sin 𝜑) 

𝑑𝑇⃗ 

𝑑𝑠
= (−(sin𝜑)

𝑑𝜑

𝑑𝑠
, (cos𝜑)

𝑑𝜑

𝑑𝑠
)  

     =
𝑑𝜑

𝑑𝑠
(− sin𝜑 , cos𝜑) =

𝑑𝜑

𝑑𝑠
𝑁𝑠
⃗⃗⃗⃗   

⇒ 𝜅𝑠 = 
𝑑𝜑

𝑑𝑠
 . 

 

Now we can derive a formula to 𝜅𝑠 for any smooth, regular curve in a plane. 

                                𝜅𝑠 = 
𝑑𝜑

𝑑𝑠
= 

𝑑𝜑

𝑑𝑡
𝑑𝑠

𝑑𝑡

   

Suppose 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)), then: 

          
𝑑𝑠

𝑑𝑡
= √(𝑥′)2 + (𝑦′)2 ,  since 

𝑑𝑠

𝑑𝑡
= ‖𝛾′(𝑡)‖. 

 

Since 𝛾′(𝑡) = (𝑥′(𝑡), 𝑦′(𝑡)) is tangent to 𝛾(𝑡)  

                 tan𝜑 =
𝑦′(𝑡)

𝑥′(𝑡)
  or 𝜑 = tan−1(

𝑦′

𝑥′) 

                        
𝑑𝜑

𝑑𝑡
=

1

1+(
𝑦′

𝑥′)
2 (

𝑥′𝑦′′−𝑦′𝑥′′

(𝑥′)2
)  

                       
𝑑𝜑

𝑑𝑡
=

1

(𝑥′)2+(𝑦′)2
 (𝑥′𝑦′′ − 𝑦′𝑥′′)  

                       𝜅𝑠 =
𝑑𝜑

𝑑𝑠
=

𝑑𝜑

𝑑𝑡
𝑑𝑠

𝑑𝑡

 =
𝑥′𝑦′′−𝑦′𝑥′′

((𝑥′)2+(𝑦′)2)
3
2

 . 

) 𝜑 
𝑦′(𝑡) 

𝑥′(𝑡) 
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Ex.  Find the signed curvature of 𝛾(𝑡) = (cos 𝑡 + 𝑡 sin 𝑡 , sin 𝑡 − 𝑡 cos 𝑡). 

 

    𝑥(𝑡) = cos 𝑡 + 𝑡 sin 𝑡   

 𝑥′(𝑡) = −sin 𝑡 + 𝑡 cos 𝑡 + sin 𝑡 

  = 𝑡 cos 𝑡 

𝑥′′(𝑡) = −𝑡𝑠𝑖𝑛𝑡 + cos 𝑡 

 

  𝑦(𝑡) = sin 𝑡 − 𝑡 cos 𝑡 

 𝑦′(𝑡) = cos 𝑡 + 𝑡 sin 𝑡 − cos 𝑡 = 𝑡 sin 𝑡 

𝑦′′(𝑡) = 𝑡 cos 𝑡 + sin 𝑡 

 

     𝜅𝑠 = 
𝑥′𝑦′′−𝑦′𝑥′′

((𝑥′)2+(𝑦′)2)
3
2

 

          =
(𝑡 cos 𝑡)(𝑡 cos 𝑡+sin 𝑡)−(𝑡 sin 𝑡)(−𝑡 sin 𝑡+cos 𝑡)

(𝑡2 cos2 𝑡+𝑡2 sin2 𝑡)
3
2

 =
𝑡2

|𝑡|3
=

1

|𝑡|
 .   

 

 

Ex.  Suppose 𝛾 is a curve in ℝ2. Using the formula for the curvature, 𝜅, of 

       a curve in ℝ3 (or ℝ2),  and the formula for the signed curvature, 𝜅𝑠,  

       in ℝ2, show |𝜅𝑠| = 𝜅. 

 

       Let 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 0). 

            𝛾′(𝑡) = (𝑥′(𝑡), 𝑦′(𝑡), 0). 

           𝛾′′(𝑡) = (𝑥′′(𝑡), 𝑦′′(𝑡), 0). 

𝛾(𝑡) 

1 
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                          𝜅 =
‖𝛾′′× 𝛾′‖

‖𝛾′‖3           

     𝛾′′ × 𝛾′ = |
𝑖 𝑗 𝑘⃑⃗

𝑥′′ 𝑦′′ 0

𝑥′ 𝑦′ 0

| = (𝑥′′𝑦′ − 𝑦′𝑥′′)𝑘⃗     

‖𝛾′′ × 𝛾′‖ = |𝑥′′𝑦′ − 𝑦′𝑥′′|   

 

          ‖𝛾′‖3 = (√(𝑥′)2 + (𝑦′)2)
3
= ((𝑥′)2 + (𝑦′)2)

3

2   

 

                 𝜅 = 
‖𝛾′′× 𝛾′‖

‖𝛾′‖3 =
|𝑥′′𝑦′−𝑦′𝑥′′|

((𝑥′)2+(𝑦′)2)
3
2

 = |𝜅𝑠| 

 

  

The fact that 𝜅𝑠 = 
𝑑𝜑

𝑑𝑠
 has an interesting consequence for the total 

 curvature of unit speed closed curves in a plane. If we let 𝑙 be the 

 length of the closed curve, then: 

 

Total signed curvature = ∫
𝑑𝜑

𝑑𝑠

𝑙

0
𝑑𝑠 = 𝜑(𝑙) − 𝜑(0) = 2𝜋𝑛 ;   𝑛 ∈ ℤ. 
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Fundamental Theorem of Plane Curves:  let 𝜅: (𝛼, 𝛽) → ℝ be any 

smooth function.  Then, there is a unit speed curve 𝛾: (𝛼, 𝛽) → ℝ2 

whose signed curvature is  𝜅.  Furthermore, if 𝛾̅: (𝛼, 𝛽) → ℝ2 is  

any other unit speed curve whose signed curvature is 𝜅, then 

𝛾 and 𝛾̅ differ by a rotation and/or a translation. 

 

Idea of Proof: Given any smooth function 𝜅: (𝛼, 𝛽) → ℝ we want to 

          construct a curve 𝛾(𝑠) such that 𝜅𝑠 =
𝑑𝜑

𝑑𝑠
= 𝜅 for 𝛾(𝑠). 

 

                                                            

 

 

 

 

 

𝛾′(𝑠) =  𝑇⃗ = (cos𝜑 , sin 𝜑) 

γ′′(𝑠) =
𝑑𝑇⃗⃗ 

𝑑𝑠
= (−(sin𝜑)

𝑑𝜑

𝑑𝑠
, (cos𝜑)

𝑑𝜑

𝑑𝑠
).    

  

We can find a curve 𝛾(𝑠) with 
𝑑𝜑

𝑑𝑠
= 𝜅 by integrating this last expression twice: 

 𝛾′(𝑠) = (∫−(sin𝜑)
𝑑𝜑

𝑑𝑠
𝑑𝑠,   ∫(cos𝜑)

𝑑𝜑

𝑑𝑠
𝑑𝑠 )     

            = (cos𝜑(𝑠) + 𝐶1 , sin 𝜑(𝑠) + 𝐶2) 

   𝛾(𝑠) = (∫(cos𝜑(𝑠) + 𝐶1)𝑑𝑠 , ∫ sin(𝜑(𝑠) + 𝐶2) 𝑑𝑠).  

) 

 

𝜑(𝑠) 

 cos(𝜑(𝑠)) 

 

sin(𝜑(𝑠)) 

 


