Plane Curves

For plane curves it is possible to define curvature so that it can be positive
or negative.

Suppose Y (S) is a unit speed parameterization of a plane curve y. Then y'(s) is
a unit tangent vector to ¥ at ¥(s). Let’s call this tangent vector, T = y'(s).
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Since Y is a plane curve there are two unit vectors perpendicularto T.
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y(s)

We will choose the signed unit normal, N (N; above), of y to be the unit vector

cd A
obtained by rotating T counterclockwise by >

Note: If T = (a, b) then N, = (—b, a).



Since y'(s) - ¥'(s) = 1, by differentiating this equation we get:

y'(s)¥"(s) +7"(s)¥'(s) = 0

or

Thus '’ is perpendicular to T = y'(s), just as Ny is. Thus we can write:

)/”(S) = Kg ﬁs

K is called the signed curvature of y.

Notice that since ”ﬁsll = 1 we have:

k= ly" )Nl = liesl||Ns|| = I

where K is the (unsigned) curvature of y.

Ex. Let’s consider two unit speed parameterization of the unit circle, one going
counterclockwise as S increases, and one going clockwise as s increases
y1(s) = (cos(s), sin(s))
Y2 (s) = (cos(s), — sin(s)).
Calculate the signed curvatures of y; and ¥,
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T; = y'1(s) = (- sin(s), cos(s))
Ny(s) = (— cos(s), — sin(s))
y1'(s) = (—cos(s), — sin(s)) = 1(Ny)

So the signed curvature of Y4 is equal to 1 at all points.

T, = ¥'2(s) = (= sin(s), — cos(s))
Ny(s) = (cos(s), — sin(s))
vy (s) = (—cos(s),sin(s)) = —1(N;)

So the signed curvature of Y, is equal to —1 at all points.

In general we have:
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If y(t) is a regular plane curve (not necessarily unit speed) we define its unit
tangent T, its signed normal N, and its signed curvature K to be those of a unit
speed parametrization of Y. Thus we have:
dy
T=%_a_v®
T ds ST vl
= ly’ (Ol




— —

N is again obtained by rotating T by g counterclockwise and

d 2y _dMds _  dso— i
dt (T) ~ Tas at s dth = K|y (O)||INs .

The signed curvature has a simple geometric interpretation in terms of the rate at
which the tangent vector rotates. Let y be a unit speed curve, then if ¢(s) is the
angle the tangent vector makes with the x-axis we have:

v'(s) = (cos(@(s)), sin(¢(s)))

@(s) is called the turning angle of y.
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Proposition: Let )/(S) be a unit speed plane curve, then kg = d—f .

Proof: T = (cos @, sin @)

daT
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(p( sin ¢, cos @) —d—(p
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=>K'S=ds.

Now we can derive a formula to K¢ for any smooth, regular curve in a plane.
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Suppose y(t) = (x(t),y(t)), then: /
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Ex. Find the signed curvature of y(t) = (cost + tsint,sint — t cost).

// T~
x(t) =cost+ tsint /
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x'(t) = —sint + tcost + sint %—‘3
=tcost “ | %})
x"'(t) = —tsint + cost \
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y(t) =sint — tcost \\\_/

y'(t) =cost+tsint —cost = tsint | S~—_ —
y''(t) = tcost + sint
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Ex. Suppose Y is a curve in RZ. Using the formula for the curvature, Kk, of
a curve in R3 (or Rz), and the formula for the signed curvature, K,

in R?, show |ks| = k.

Let y(t) = (x(t), y(t),0).
Y'(®) = (x'(t),y'(t),0).
Y'(@) = (x"(t),y"(t),0).
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The fact that kg = s has an interesting consequence for the total

curvature of unit speed closed curves in a plane. If we let [ be the
length of the closed curve, then:

Total signed curvature = f (pdS = @) —p(0) =2nn; neL.



Fundamental Theorem of Plane Curves: let k: (a, ) = R be any
smooth function. Then, there is a unit speed curve : (a, f) = R?
whose signed curvature is k. Furthermore, if : (a, B) = R? is
any other unit speed curve whose signed curvature is K, then

Y and Y differ by a rotation and/or a translation.

Idea of Proof: Given any smooth function k: (&, ) = R we want to

construct a curve Y (S) such that kg = Z—f = K for y(s).
/
" |sin(e(s))
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dos(¢(s))
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y'(s) = T = (cos ¢, sin )
. dT . d d
v'(s) = 5 = (~Gsin@) 3, (cos ) 32).
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We can find a curve Y (s) with d_(f = K by integrating this last expression twice:

y'(s) = (J =(sin w)i—fds, [ (cos go)fl—(gds)
= (cos @(s) + C;,sinp(s) + C,)
y(s) = (J(cos p(s) + Cy)ds, [sin(p(s) + C;)ds).



