Reparametrization of Curves and Closed Curves

As we saw earlier, there are many different parametrizations for the same curve.

Ex. y1(t) = (cost,sint) 0<t<2m
vo(t) = (cos2t,sin2t) 0<t<m
y3(t) = (sint, cos t) 0<t<2nm

These are all representations of the circle x2 + yz = 1.

Def. A parametrized curve V: (@, E) — R™ is a reparametrization of a
parametrized curve ¥: (@, b) = R™ if there is a smooth bijective map ¢

(i.e. 1-1 and onto)
@:(a,b) = (a, b) such that the inverse map:
»~1:(a,b) = (@,b) is also smooth and

Y(@) =y(p(t)) forallt € (&, I;)
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Ex. ¥,(t) = (cos 2t,sin 2t) and y5(t) = (sint, cost) are both
reparametrizations of y; (t) = (cost,sint) since:

if (t) = 2t then
Y2(t) =71 (‘P(t))

= 11(2¢8)
= (cos 2t, sin 2t).

And if @(t) = % — t then
v3(®) = ri(e®) =11 (5—t)
= (cos (g — t) ) sin(g —t))

= (sint, cost).

It turns out that the analysis of a curve is simplified if it is parametrized in a way
that has unit speed (i.e. ||y’ (t)|| = 1).

Def: A point Y (t) of a parametrized curve y is called a regular point if
' (¢) # 0. Otherwise, ¥'(t) is a singular point of . A curve is
regular if all of its points are regular.

Ex. y1(t) = (t,t?) isa regular parametrization of y = x2 because
y1(t) = (1, 2t) # (0,0) forany t.
However, ¥, (t) = (t3, t6) is not a regular parametrization of

y = x2 because Y5 (t) = (3t2, 6t>) whichis (0,0) at t = 0.



Prop: Any reparametrization of a regular curve is regular.

Proof: Let y(t) be a regular curve. We must show given a reparametrization,

v(p(t)), that % ()/(go (t))) exists and is never 0.
Let ) = @~ ! then lp((p(t)) = t. Using the chain rule we get:
P (p®)e'(®) = 1;  thus @' () # 0.

Applying the chain rule to y(<p (t)) we get:
d , :
= (e®)) = 7)o ®.
N ’ d n
Y isregularsoy’ # 0,and ¢'(t) # 0, so P (]/((p(t))) # 0.

d
Py (y((p(t))) also exists by the chain rule, so y((p(t))) is regular.

Prop: If y(t) is a regular curve then its arc length, s, starting at any
point of ¥, is a smooth function of t.

Proof: We saw earlier that s = f Iy (W]l du, s = ly'@®ll.
Ify(t) = (u(t),v(t))andy'(t) = (u' (t),v (1)), then:

1

& = WP = () + 0
ﬁ =3 ((“) +(v) ) %(Z(u)u +2(v)v").




Now if f(x) = v/x for x > 0, then we know f ™ (x) exists for
allx >0,n>1.

Thus, since u, v are smooth and (1')? + (v')% > 0 (since y(t) is

ds . )
regular), at is smooth for all t and hence so is S(t).

Prop: A parametrized curve has a unit speed reparametrization if and

only if it is regular.

Generally, we will be using the statement that if y is regular then it has a unit
speed reprametrization. This follows from the inverse function theorem.

Corallary: Let ¥ be a regular curve and let ¥ be a unit speed reparametrization
of y: V(u(t)) = y(t), forall t where U is a smooth function of t.
Then, if S is the arc length of Y (starting at any point), we have:
U = +s 4+ ¢; where C is a constant.

Conversely, if U is given by U = £5 + ¢, then ¥ is a unit speed

reparametrization of y.

Thus we can think of any unit speed parametrization of a curve as being
parametrized by (a translation of) arc length.



Ex. Showthaty(t) = (efsint,etcost,e’)isaregular

curve for t € R and find a unit speed reparametrization of ¥ (t).

y(t) = (e'tsint,elt cost, elt);

t>0

y'(t) = (ef(cost +sint), e‘(cost —sint), et)
Iy’ ()|l = vV3et # Oforany t € R

Thus Y (t) is a regular curve for t € R.

The arc length starting at y(0) = (0,1,1) is written as:

S =f0t\/§eu du =+/3(ef - 1)

To write ¥(t) in terms of S we need to solve s = v/3(et — 1) for t

in terms of S.



To do this we must find the inverse function of

s(t) =+/3(et - 1):

S ot _
\E—e 1

+1=¢t

S

NE
1n(% +1) =t

Now to find y(t) = (efsint, el cost,et) interms of s, substitute
t = ln(% + 1) into the formula for y (t).

Notice:

t 1n(%+1)_i
et =e V3 _\/§+1'

Thus, y(t) = (elsint,et cost,et) becomes:

7(s) = ((f§ + 1) sin(In (% + 1))(% +1) cos(In (% + 1))),% +1) .

Note: In general it can be very difficult (or even impossible) to write a
given regular curve y(t) in terms of elementary functions of a unit speed
parameter S. This is because s = fti)lly’(u)ll du often can’t be written in terms of

elementary functions, and if it can, finding the inverse function of s(t) could be
very difficult.



Ex. Notice that the circle x2 + yz = 1 givenby y(t) = (cost,sint),
where t € R, is already a unit speed parametrization.

y'(t) = (—sint,cost)

ly' ()| = \/(— sint)? + (cost)? = 1.

It’s clear that some curves, like circles and ellipses, have the property that a point
will return to its starting point and then retrace the same curve. However, one
can have a curve where a point returns to its starting point but does not retrace

the same curve. Forexample: ¥(t) = (t3 —t, t>—1); teR.

t=1landt = -1

Def. Lety:IR = R" be a smooth curveand let T € R.

We say ¥ is T-periodic if: y(t + T) = y(t) forall t € R.

If ¥ is not constant and is T-periodic for some T # 0, then ¥ is said to be

closed.



Notice that a T-periodic curve Y is determined by its restriction to any interval of
length |T|. So, closed curves can be thought of as:

v:|a,b] - R"
where b — a = |T| and y(b) = y(a), aswellas y"(b) = y™(a).

Def. The period of a closed curve ¥ is the smallest positive number T such that ¥
is T-periodic.

Ex. y(t) = (cos 4t, sin4t) is a closed curve (a circle of period %).

Def. A curve (closed or not) is said to have a self-intersection at a

point, P, on the curve if there exist parameter values a # b such

that:

) v(@=yb)=p.
ii) If ¥ is closed with period T, then @ — b is not an integer multiple of

T.

Ex. y(t) = (t3 —t,t2 —1); t € R has a self intersection pointat t = +1,
but is not a closed curve since there is no T such that y(t + T) = y(t) for all
t € R



Ex. The limacon given by:
y(@) =((1+2cost)cost,(1+2cost)sint) ; tER

is a closed curve of period 27T and has a self-intersection point at (0,0).

y(t)

t=2?n+2nnandt=4?n+2nn

n an integer.




